

# COM 830 (Computer-On-Module) Reference Manual

P/N 5001829A Revision A

## **Notice Page**

#### NOTICE

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Ampro Computers, Incorporated.

#### DISCLAIMER

Ampro Computers, Incorporated makes no representations or warranties with respect to the contents of this manual or of the associated Ampro products, and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Ampro shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this product, even if it has been notified of the possibility of such damages. Ampro reserves the right to revise this publication from time to time without obligation to notify any person of such revisions. If errors are found, please contact Ampro at the address listed below on the Notice page of this document.

#### TRADEMARKS

Ampro and the Ampro logo are registered trademarks, and CoreModule, EnCore, Little Board, LittleBoard, MightyBoard, MightySystem, MiniModule, ReadyBoard, ReadyBox, ReadyPanel, and ReadySystem are trademarks of Ampro Computers, Inc. All other marks are the property of their respective companies.

#### REVISION HISTORY

| Revision | Reason for Change   | Date    |
|----------|---------------------|---------|
| A, 1     | Preliminary Release | Apr/07  |
| A, A     | Final Release       | July/07 |
|          |                     |         |
|          |                     |         |
|          |                     |         |
|          |                     |         |
|          |                     |         |

Ampro Computers, Incorporated
5215 Hellyer Avenue
San Jose, CA 95138-1007
Tel. 408 360-0200
Fax 408 360-0222
www.ampro.com
© Copyright 2007, Ampro Computers, Incorporated

## **Audience**

This reference manual is for the person who designs computer related equipment, including but not limited to hardware and software design and implementation of the same. Ampro Computers, Inc. assumes you are qualified in designing and implementing your hardware designs and its related software into your prototype computer equipment.

# **Contents**

| •           | About This Manual              |    |
|-------------|--------------------------------|----|
| •           |                                |    |
|             | rning                          |    |
| Cau         | ıtion                          | 1  |
| Note        | e                              | 1  |
| Terminolog  | gy                             | 1  |
| •           |                                |    |
| -           | ess™ Concept                   |    |
|             | on                             |    |
|             | Support                        |    |
| Lead-Free   | Designs (RoHS)                 | 3  |
| Electrostat | tic Sensitive Device           | 3  |
| COM 830     | Options Information            | 3  |
| Chapter 2   | Specifications                 | 5  |
| Feature Lis | st                             | 5  |
| Usable Me   | emory                          | 6  |
| Supported   | Operating Systems              | 6  |
| Mechanica   | al Dimensions                  | 6  |
| Electro     | static Sensitive Device        | 7  |
| Supply Vo   | Itage Standard Power           | 7  |
| Electric    | cal Characteristics            | 7  |
|             | nsumption                      |    |
| Windov      | vs XP Professional SP2         | 7  |
| Processor   | Information                    | 8  |
|             | ental Specifications           |    |
| Block Diag  | gram                           | 10 |
| Heatsprea   | der                            | 11 |
| •           | der Dimensions                 |    |
|             | Subsystems Rows A, B, C, D     |    |
| •           | onnector Rows A and B          |    |
| Serial A    | ATA™ (SATA)                    | 13 |
| USB 2.      | 0                              | 13 |
| AC'97 I     | Digital Audio Interface/HDA    | 13 |
| Gigabit     | Ethernet                       | 13 |
|             | JS                             |    |
|             | s 400kHz                       |    |
| PCI Ex      | press™                         | 14 |
| Expres      | sCard™                         | 14 |
| Graphic     | cs Output (VGA/CRT)            | 14 |
| LCD         |                                | 14 |
| TV-Out      | t                              | 14 |
| Power Cor   | ntrol                          | 14 |
| PWR_0       | OK                             | 14 |
| SUS_S       | 5#/PS_ON#                      | 14 |
|             | TN#                            |    |
|             | oply Implementation Guidelines |    |
| Power       | Management                     | 15 |

| Secondary Connector Rows C and D                    | 15 |
|-----------------------------------------------------|----|
| PCI Express Graphics (PEG)                          | 15 |
| SDVO                                                | 15 |
| PCI Bus                                             | 15 |
| IDE                                                 | 15 |
| Additional Features                                 | 15 |
| Watchdog                                            | 15 |
| Onboard Microcontroller                             | 16 |
| Embedded BIOS                                       | 16 |
| Simplified Overview of BIOS Setup Data Backup       | 17 |
| Security Features                                   | 18 |
| Suspend to Ram                                      | 18 |
| Ampro Tech Notes                                    | 18 |
| Comparison of I/O APIC to 8259 PIC Interrupt mode   | 18 |
| Intel® Matrix Storage Technology                    | 18 |
| AHCI                                                | 18 |
| RAID                                                | 18 |
| Native vs. Compatible IDE mode                      | 19 |
| Compatible Mode                                     | 19 |
| Native Mode                                         | 19 |
| Intel® Processor Features                           | 19 |
| Thermal Monitor and Catastrophic Thermal Protection | 19 |
| Processor Performance Control                       | 20 |
| Intel 64                                            | 20 |
| Intel® Virtualization Technology                    | 21 |
| Thermal Management                                  | 21 |
| Passive Cooling                                     | 21 |
| Active Cooling                                      | 22 |
| Critical Trip Point                                 | 22 |
| ACPI Suspend Modes and Resume Events                | 22 |
| USB 2.0 EHCI Host Controller Support                |    |
| Routing Diagram:                                    | 24 |
| Chapter 3 Signals and Pinout Tables                 | 25 |
| A-B Connector Signal Descriptions                   | 26 |
| A-B Connector Pinout                                | 36 |
| C-D Connector Signal Descriptions                   | 38 |
| C-D Connector Pinout                                | 43 |
| Boot Strap Signals                                  | 45 |
| System Resources                                    | 46 |
| System Memory Map                                   | 46 |
| I/O Address Assignment                              | 46 |
| LPC Bus                                             | 47 |
| Interrupt Request (IRQ) Lines                       | 48 |
| PCI Configuration Space Map                         | 49 |
| PCI Interrupt Routing Map                           |    |
| PCI Bus Masters                                     |    |
| I <sup>2</sup> C Bus                                | 52 |
| SM Bus                                              | 52 |

| Chapter 4     | BIOS Setup Description                    | 53 |
|---------------|-------------------------------------------|----|
| Entering the  | BIOS Setup Program                        | 53 |
| Boot Sele     | ection Popup                              | 53 |
| Manufact      | urer Default Settings                     | 53 |
| Setup Menu    | and Navigation                            | 53 |
| Main Setup    | Screen                                    | 54 |
| Advanced S    | etup                                      | 55 |
| ACPI Co       | nfiguration Submenu                       | 56 |
| Win XP Wat    | chdog ACPI Event restart configuration    | 57 |
| PCI Conf      | iguration Submenu                         | 57 |
| PCI IF        | RQ Resource Exclusion Submenu             | 58 |
| PCI Ir        | terrupt Routing Submenu                   | 58 |
| Graphics      | Configuration Submenu                     | 58 |
| CPU Cor       | figuration Submenu                        | 61 |
| Chipset C     | Configuration Submenu                     | 63 |
| I/O Interfa   | ace Configuration Submenu                 | 64 |
| SIO W         | /inbond W83627 Configuration              | 65 |
| Clock Co      | nfiguration                               | 66 |
| IDE Conf      | iguration Submenu                         | 66 |
|               | ry/Secondary IDE Master/Slave Submenu     |    |
|               | figuration Submenu                        |    |
| USB I         | Mass Storage Device Configuration Submenu | 71 |
| Keyboard      | I/Mouse Configuration Submenu             | 71 |
| Remote A      | Access Configuration Submenu              | 72 |
| Hardware      | Monitoring Submenu                        | 73 |
| Watchdo       | g Configuration Submenu                   | 74 |
| Boot Setup.   |                                           | 75 |
| Boot Dev      | ice Priority                              | 76 |
| Boot Sett     | ings Configuration                        | 77 |
| Security Set  | up                                        | 78 |
| Security      | Settings                                  | 79 |
| Hard Disl     | Security                                  | 79 |
| Hard I        | Disk Security User Password               | 80 |
| Hard I        | Disk Security User Password               | 80 |
| Power Setup   | )                                         | 80 |
| Exit Men      | J                                         | 81 |
| Additional Bl | OS Features                               | 81 |
| Updating the  | BIOS                                      | 81 |
| BIOS Recov    | ery                                       | 81 |
| BIOS Re       | covery via Storage Devices                | 81 |
|               | covery via Serial Port                    |    |
| Serial Port a | nd Console Redirection                    | 82 |
| BIOS Securi   | ty Features                               | 82 |
|               | ecurity Features                          |    |
| Industry Spe  | cifications                               | 83 |
| Appendix A    | Technical Support                         | 85 |

| List of Tables |                                                              |    |
|----------------|--------------------------------------------------------------|----|
| Table 1-1.     | Definitions of Terms                                         | 1  |
| Table 1-2.     | COM Express Pinout Types                                     | 2  |
| Table 1-3.     | COM 830 Configuration Matrix                                 | 3  |
| Table 2-1.     | Feature Summary                                              | 5  |
| Table 2-2.     | Dual Connector Pinout Limitations                            | 7  |
| Table 2-3.     | COM 830 Intel® Core™ Duo U2500 1.2GHz 2MB L2 cache           | 8  |
| Table 2-4.     | COM 830 Intel® Celeron M 423 1.07GHz 1MB L2 cache            | 9  |
| Table 3-1.     | Signal Tables Terminology Descriptions                       | 25 |
| Table 3-2.     | AC'97/Intel® High Definition Audio Link Signals Descriptions | 26 |
| Table 3-3.     | Gigabit Ethernet Signal Descriptions                         | 27 |
| Table 3-4.     | Serial ATA Signal Descriptions                               | 27 |
| Table 3-5.     | PCI Express Signal Descriptions [general purpose]            | 28 |
| Table 3-6.     | ExpressCard Support Pins Descriptions                        | 29 |
| Table 3-7.     | LPC Signal Descriptions                                      | 29 |
| Table 3-8.     | USB Signal Descriptions                                      | 30 |
| Table 3-9.     | CRT Signal Descriptions                                      | 31 |
| Table 3-10.    | LVDS Signal Descriptions                                     | 32 |
| Table 3-11.    | TV-Out Signal Descriptions                                   | 32 |
| Table 3-12.    | Miscellaneous Signal Descriptions                            | 33 |
| Table 3-13.    | General Purpose I/O Signal Descriptions                      | 34 |
| Table 3-14.    | Power and System Management Signal Descriptions              | 34 |
| Table 3-15.    | Power and GND Signal Descriptions                            | 35 |
| Table 3-16.    | Connector A-B Pinout                                         | 36 |
| Table 3-17.    | PCI Signal Descriptions                                      | 38 |
| Table 3-18.    | IDE Signal Descriptions                                      | 39 |
| Table 3-19.    | PCI Express Signal Descriptions (x16 Graphics)               | 40 |
| Table 3-20.    | SDVO Signal Descriptions                                     | 41 |
| Table 3-21.    | Module Type Definition Signal Description                    | 42 |
| Table 3-22.    | Power and GND Signal Descriptions                            | 42 |
| Table 3-23.    | Connector C-D Pinout                                         | 43 |
| Table 3-24.    | Boot Strap Signal Descriptions                               | 45 |
| Table 3-25.    | Memory Map                                                   | 46 |
| Table 3-26.    | I/O Address Assignment                                       | 47 |
| Table 3-27.    | IRQ Lines in PIC mode                                        | 48 |
| Table 3-28.    | IRQ Lines in APIC mode                                       | 48 |
| Table 3-29.    | PCI Configuration Space Map                                  | 49 |
| Table 3-30.    | PCI Interrupt Routing Map                                    | 51 |
| Table 3-31.    | PCI Interrupt Routing Map (continued)                        | 52 |
| Table 3-32.    | LAN                                                          |    |
| Table A-1.     | Technical Support Contact Information                        | 85 |

This manual provides information about the components, features, connectors and BIOS Setup menus available on the COM 830.

## **Symbols**

The following symbols are used in this manual:

## Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

#### Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

#### Note

Notes call attention to important information that should be observed.

# **Terminology**

Table 1-1. Definitions of Terms

| Term              | Description                         |  |  |
|-------------------|-------------------------------------|--|--|
| GB                | Gigabyte (1,073,741,824 bytes)      |  |  |
| GHz               | Gigahertz (one billion hertz)       |  |  |
| kB                | Kilobyte (1024 bytes)               |  |  |
| MB                | Megabyte (1,048,576 bytes)          |  |  |
| Mb                | Megabit (1,048,576 bits)            |  |  |
| kHz               | Kilohertz (one thousand hertz)      |  |  |
| MHz               | Megahertz (one million hertz)       |  |  |
| TDP               | Thermal Design Power                |  |  |
| PCIe              | PCI Express                         |  |  |
| SATA              | Serial ATA                          |  |  |
| PATA Parallel ATA |                                     |  |  |
| T.O.M.            | Top of memory = max. DRAM installed |  |  |
| HDA               | High Definition Audio               |  |  |
| I/F               | Interface                           |  |  |
| N.C.              | Not connected                       |  |  |
| N.A.              | Not available                       |  |  |
| TBD               | To be determined                    |  |  |

# **Warranty**

Ampro makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty"). Ampro may in its sole discretion modify its Limited Warranty at any time and from time to time.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, Ampro represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at Ampro's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from Ampro prior to returning the non conforming product freight prepaid. Ampro will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by Ampro, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to Ampro's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, Ampro makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

Ampro shall in no event be liable to the end user for collateral or consequential damages of any kind. Ampro shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against Ampro, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only

## COM Express™ Concept

COM Express<sup>TM</sup> is an open industry standard defined specifically for COMs (computer on modules). Its creation provides the ability to make a smooth transition from legacy parallel interfaces to the newest technologies based on serial buses available today. COM Express<sup>TM</sup> modules are available in the following form factors:

- Compact 95mm x 95mm (not specified by PICMG<sup>®</sup>)
- Basic 25mm x 95mm
- Extended 55mm x 110mm

The COM Express<sup>TM</sup> specification 1.0 defines five different pinout types.

Table 1-2. COM Express Pinout Types

| Types  | Connector Rows | PCI Express Lanes | CI Express Lanes PCI |   | LAN ports |
|--------|----------------|-------------------|----------------------|---|-----------|
| Type 1 | A-B            | Up to 6           |                      |   | 1         |
| Type 2 | A-B C-D        | Up to 22          | 32 bit               | 1 | 1         |
| Type 3 | A-B C-D        | Up to 22          | 32 bit               |   | 3         |
| Type 4 | A-B C-D        | Up to 32          |                      | 1 | 1         |
| Type 5 | A-B C-D        | Up to 32          |                      |   | 3         |

Ampro modules utilize the Type 2 pinout definition. They are equipped with two high performance connectors that ensure stable data throughput.

The COM (computer on module) integrates all the core components and is mounted onto an application specific carrier board. COM modules are a legacy-free design (no Super I/O, PS/2 keyboard and mouse) and provide most of the functional requirements for any application. These functions include, but are not limited to, a rich complement of contemporary high bandwidth serial interfaces such as PCI Express, Serial ATA, USB 2.0, and Gigabit Ethernet. The Type 2 pinout provides the ability to offer 32-bit PCI, Parallel ATA, and LPC options thereby expanding the range of potential peripherals. The robust thermal and mechanical concept, combined with extended power management capabilities, is perfectly suited for all applications.

Carrier board designers can utilize as little or as many of the I/O interfaces as necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration. Most importantly, COM Express<sup>TM</sup> modules are scalable, which means once an application has been created there is the ability to diversify the product range through the use of different performance class or form factor size modules. Simply unplug one module and replace it with another, no redesign is necessary.

## Certification

Ampro is certified to DIN EN ISO 9001:2000 standard.

# **Technical Support**

Ampro technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.ampro.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at www.ampro.com.com/Support/.

# Lead-Free Designs (RoHS)

As of July 2006 all electronic products are required to be environmentally friendly. In the future, many of the currently available embedded computer modules will not be offered as lead-free variants. For this reason all Ampro designs are created from lead-free components and are completely RoHS compliant. This makes Ampro products ideal lead-free substitutes for new and existing designs.

## **Electrostatic Sensitive Device**

All Ampro products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle an Ampro product except at an electrostatic-free workstation. Additionally, do not ship or store Ampro products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the Ampro Limited Warranty.

# **COM 830 Options Information**

The COM 830 is currently available in two different variants. This manual describes all of these options. Below you will find an order table showing the different configurations that are currently offered by Ampro. Check the table for the Part no./Order no. that applies to your product. This will tell you which options described in this manual are available on your particular module.

Table 1-3. COM 830 Configuration Matrix

| Part-No. | COM 830-R-30                                             | COM 830-R-10                                         |
|----------|----------------------------------------------------------|------------------------------------------------------|
| CPU      | Intel® Core™ Duo U2500 ULV<br>1.2GHz (Ultra Low Voltage) | Intel® Celeron M 423 1.07GHz ULV (Ultra Low Voltage) |
| L2 Cache | 2 MByte                                                  | 1 MByte                                              |
| FSB      | 533MHz                                                   | 533MHz                                               |
| CPU TDP  | 9 W                                                      | 5.5 W                                                |

# **Feature List**

Table 2-1. Feature Summary

| Form Factor         | Based on COM Express <sup>TM</sup> standard pinout Type 2 (Basic size 95 x 125mm)                                                                  |           |                                                                                                      |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------|--|--|--|
| Processor           | Intel® Core™ Duo U2500 ULV 1.2GHz, with 2-MByte L2 cache ULV (Ultra Low Voltage)                                                                   |           |                                                                                                      |  |  |  |
|                     | Intel® Celeron M 423 ULV 1.07GHz,                                                                                                                  | with 1-N  | MByte L2 cache (Ultra Low Voltage)                                                                   |  |  |  |
| Memory              | 2 sockets: SO-DIMM DDR2 667 up to 4-GByte physical memory. Sockets located top and bottom side of module.                                          |           |                                                                                                      |  |  |  |
| Chipset             | Graphics and Memory Controller Hub                                                                                                                 | (GMHC     | C) Intel® 82945GM                                                                                    |  |  |  |
|                     | Intel® I/O Controller Hub 82801GHM                                                                                                                 | (ICH7M    | I-DH)                                                                                                |  |  |  |
| Audio               | AC'97 Rev.2.2 compatible, HDA (Hig with support for multiple codecs                                                                                | gh Defini | ition Audio)/digital audio interface                                                                 |  |  |  |
| Ethernet            | Gigabit Ethernet, Marvell 88E8056 (u                                                                                                               | ses one x | (1 PCI Express Lane)                                                                                 |  |  |  |
| Graphics<br>Options | Intel® Graphics Media Accelerator 95 Memory Technology (DVMT 3.0) as                                                                               |           |                                                                                                      |  |  |  |
|                     | CRT Interface                                                                                                                                      |           | Motion Video Support                                                                                 |  |  |  |
|                     | 400 MHz RAMDAC                                                                                                                                     |           | Up- and Downscaling                                                                                  |  |  |  |
|                     | Resolutions up to 2048x1536 @ 70Hz                                                                                                                 |           | High definition content decode                                                                       |  |  |  |
|                     | (QXGA) including 1920x1080 @ 85F<br>(HDTV)                                                                                                         | ız        | H/W motion compensation Subpicture support Dynamic bob and weave                                     |  |  |  |
|                     | Flatpanel Interface (integrated)                                                                                                                   |           |                                                                                                      |  |  |  |
|                     | 2x112MHz LVDS Transmitter                                                                                                                          |           | AUX Output 2 x Intel compliant SDVO ports (serial DVO) 200MPixel/sec each (shared with PEG x16 pins) |  |  |  |
|                     | Supports all 1x18, 2x18, 1x24, 2x24 E configurations (current chipset revisio support 24Bit modes although not offi stated by Intel <sup>®</sup> ) | ns        |                                                                                                      |  |  |  |
|                     | Supports both conventional (FPDI) an conventional (LDI) color mappings                                                                             | d non-    | Supports external DVI, TV and LVDS transmitter                                                       |  |  |  |
|                     | Automatic Panel Detection via EPI                                                                                                                  |           | TV Out: Integrated TV encoder                                                                        |  |  |  |
|                     | (Embedded Panel Interface based on V<br>EDID <sup>TM</sup> 1.3)                                                                                    | /ESA      | Supports component + s-video                                                                         |  |  |  |
|                     | Resolutions 640x480 up to 1920x1200 (UXGA)                                                                                                         |           |                                                                                                      |  |  |  |
| Peripheral          | 2x Serial ATA® supports RAID 0/1                                                                                                                   | PCI Bu    | Bus Rev. 2.3                                                                                         |  |  |  |
| Interfaces          | 5x x1 PCI Express® Lanes                                                                                                                           | 1x EID    | E (UDMA-66/100)                                                                                      |  |  |  |
|                     | PCI Express Graphics x16 (shared                                                                                                                   | LPC B     | us                                                                                                   |  |  |  |
|                     | with SDVO)                                                                                                                                         |           | s, Fast Mode (400 kHz)                                                                               |  |  |  |
|                     | 8x USB 2.0 (EHCI) multimaster                                                                                                                      |           |                                                                                                      |  |  |  |

Table 2-1. Feature Summary (Continued)

| BIOS                | Based on AMIBIOS8 <sup>®</sup> -1MByte Flash BIOS with Embedded BIOS features. |
|---------------------|--------------------------------------------------------------------------------|
| Power<br>Management | ACPI 2.0 compliant with battery support. Also supports Suspend to RAM (S3).    |

|                                                                      | NOTE | Some of the features mentioned in the above Feature Summary are optional.      |  |  |
|----------------------------------------------------------------------|------|--------------------------------------------------------------------------------|--|--|
| Check the article number of your module and compare it to the option |      |                                                                                |  |  |
|                                                                      |      | information listed in Tables 2-3 and 2-4 on page 9 of this manual to determine |  |  |
|                                                                      |      | what options are available on your particular module.                          |  |  |
|                                                                      |      |                                                                                |  |  |

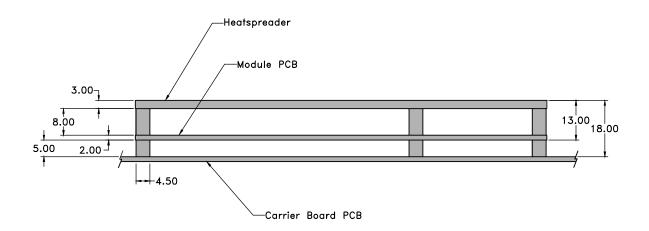
# **Usable Memory**

Although the Intel<sup>®</sup> 82945GM Graphics and Memory Controller Hub (GMHC) supports up to 4GB of physical memory, not all of the available memory is usable for applications. This is due to the fact that some of the physical memory will always be allocated to the following:

Legacy MMIO (Memory Mapped I/O) Chipset MMIO PCI Enumeration Area

In order to provide full support for the above mentioned areas, usable memory is limited to 3GB on the COM 830 when a maximum of 4GB physical memory is installed.

# **Supported Operating Systems**


The COM 830 supports the following operating systems.

Microsoft<sup>®</sup> Windows <sup>®</sup>XP Embedded Linux

## **Mechanical Dimensions**

95.0 mm x 125.0 mm (3.74" x 4.92")

Height approx. 18 or 21mm (including heatspreader) depending on the carrier board connector that is used. If the 5mm (height) carrier board connector is used then approximate overall height is 18mm. If the 8mm (height) carrier board connector is used then approximate overall height is 21mm.



#### **Electrostatic Sensitive Device**

All COM 830 variants are electrostatic sensitive devices. Do not handle the COM 830, or processor, except at an electrostatic-free workstation. Failure to do so may cause damage to the module and/or processor and void the manufacturer's warranty.

# **Supply Voltage Standard Power**

 $12V DC \pm 5\%$ 

#### **Electrical Characteristics**

Power supply pins on the module's connectors limit the amount of input power. The following table provides an overview of the limitations for pinout Type 2 (dual connector, 440 pins).

Table 2-2. Dual Connector Pinout Limitations

| Power<br>Rail      | Module<br>Pin<br>Current<br>Capability<br>(Amps) | Nominal<br>Input<br>(Volts) | Input<br>Range<br>(Volts) | Derated<br>Input<br>(Volt) | Max.<br>Input<br>Ripple<br>(mV) | Max. Module<br>Input Power<br>(w. derated<br>input)(Watts) | Assumed<br>Conversion<br>Efficiency | Max.Load<br>Power<br>(Watts) |
|--------------------|--------------------------------------------------|-----------------------------|---------------------------|----------------------------|---------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------|
| VCC_<br>12V        | 16.5                                             | 12                          | 11.4-<br>12.6             | 11.4                       | +/- 100                         | 188                                                        | 85%                                 | 160                          |
| VCC_<br>5V-<br>SBY | 2                                                | 5                           | 4.75-<br>5.25             | 4.75                       | +/- 50                          | 9                                                          |                                     |                              |
| VCC_<br>RTC        | 0.5                                              | 3                           | 2.0-3.3                   |                            | +/- 20                          |                                                            |                                     |                              |

# **Power Consumption**

The power consumption values listed in this document were measured under a controlled environment. The hardware used includes a COM 830 module, Ampro baseboard, CRT monitor, SATA drive, and USB keyboard. The complete testing environment was powered by a Direct Current (DC) power supply that is set to output 12V. The current consumption value displayed by the DC power supply's readout is the value that is recorded as the power consumption measurement. All recorded values are approximate.

The power consumption of the Ampro baseboard (without module attached) was first measured and the resulting value was later subtracted from the overall power consumption value measured when the module and all peripherals were connected.

The SATA drive was powered externally by an ATX power supply so that it does not influence the power consumption value that is measured for the module. The USB keyboard was detached once the module was configured within the OS.

Each module was measured while running Windows XP Professional with SP2 (service pack 2) and the "Power Scheme" was set to "Portable/Laptop". This setting ensures that Core 2 Duo and Core Duo processors run in LFM (lowest frequency mode) with minimal core voltage during desktop idle. Celeron M processors do not support this feature and therefore always run at the same core voltage even during desktop idle. Each module was tested while using a swissbit® DDR2 PC2-4200-444 512MB memory module. Using different sizes of RAM, as well as two memory modules, will cause slight variances in the measured results. Power consumption values were recorded during the following stages:

#### Windows XP Professional SP2

Desktop Idle (1000MHz for 667MHz FSB or 800MHz for 533MHz FSB modules)

100% CPU workload (see note below)

Windows XP Professional Standby Mode (requires setup node "Suspend Mode" in the BIOS to be configured to S1 POS [Power On Suspend])

Suspend to RAM (requires setup node "Suspend Mode" in BIOS to be configured to S3 STR [suspend to RAM])

**NOTE** The PassMark, Burn-In Test-Suite was used to stress the CPU to 100% workload.

## **Processor Information**

In the following power tables there is some additional information about the processors. Intel<sup>®</sup> offers processors that are considered to be low power consuming. These processors can be identified by their voltage status. Intel uses the following terms to describe these processors. If none of these terms are used then the processor is not considered to be low power consuming.

LV=Low voltage ULV=Ultra low voltage

When applicable, the above mentioned terms will be added to the power tables to describe the processor. For example:

Intel® Core<sup>TM</sup> Duo L2400 1.66GHz 2MB L2 cache LV

Intel<sup>®</sup> also describes the type of manufacturing process used for each processor. The following term is used:

nm=nanometer

The manufacturing process description is included in the power tables as well. See example below. For information about the manufacturing process, visit Intel's website.

Intel<sup>®</sup> Core<sup>TM</sup> Duo L2400 1.66GHz 2MB L2 cache LV **65nm** 

Table 2-3. COM 830 Intel® Core™ Duo U2500 1.2GHz 2MB L2 cache

| COM 830-R-30                                  | Intel <sup>®</sup> Core™ Duo U2500 1.2GHz 2MB L2 cache |                |              |             |  |
|-----------------------------------------------|--------------------------------------------------------|----------------|--------------|-------------|--|
|                                               | ULV 65nm                                               |                |              |             |  |
|                                               | Layout Rev.B945LX0 /BIOS Rev. B945R007                 |                |              |             |  |
| Memory Size                                   | 512MB                                                  |                |              |             |  |
| Operating System                              | Windows XP Pro                                         | ofessional SP2 |              |             |  |
| Power State                                   | Desktop Idle 100% Standby (S1) Suspend to Ram (S3)     |                |              |             |  |
| Power consumption (measured in Amperes/Watts) | 0.99A/11.88 W                                          | 2.07A/24.84 W  | 1.62A/19.49W | 0.81A/9.78W |  |

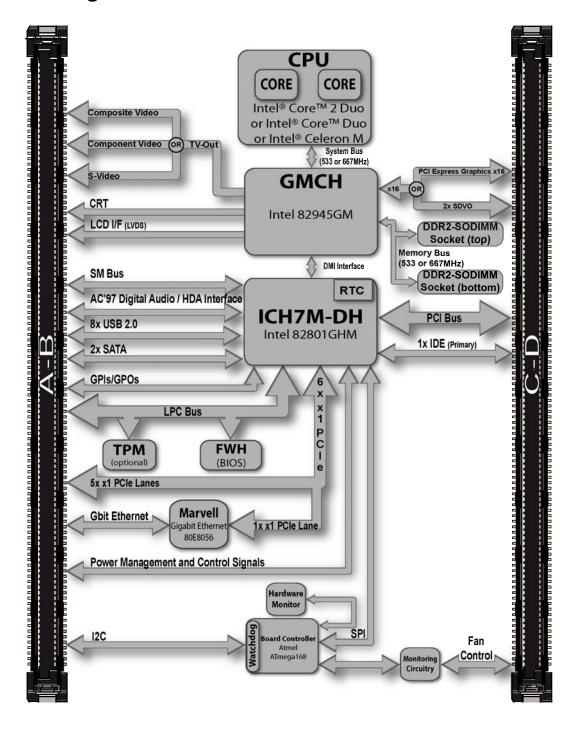
Table 2-4. COM 830 Intel® Celeron M 423 1.07GHz 1MB L2 cache

| COM 830-R-10                                     | Intel® Celeron M 423 1.06GHz 1MB L2 cache          |               |              |             |  |  |
|--------------------------------------------------|----------------------------------------------------|---------------|--------------|-------------|--|--|
|                                                  | ULV 65nm                                           |               |              |             |  |  |
| Memory Size                                      | 512MB                                              |               |              |             |  |  |
| Operating System                                 | Windows XP Prot                                    | fessional SP2 |              |             |  |  |
| Power State                                      | Desktop Idle 100% Standby (S1) Suspend to Ram (S3) |               |              |             |  |  |
| Power consumption<br>(measured in Amperes/Watts) | 1.26A/15.10W                                       | 1.90A/22.82W  | 1.60A/19.23W | 0.82A/9.86W |  |  |

NOTE

All recorded power consumption values are approximate and only valid for the controlled environment described earlier. Power consumption results will vary depending on the workload of other components such as graphics engine, memory, etc.

# **Environmental Specifications**


Temperature Operation: 0° to 60°C Storage: -20° to +80°C Humidity Operation: 10% to 90% Storage: 5% to 95%

| CAUTION | The above operating temperatures must be strictly adhered to at all times. |
|---------|----------------------------------------------------------------------------|
|         | When using a heatspreader the maximum operating temperature refers to      |
|         | any measurable spot on the heatspreader's surface.                         |

Ampro strongly recommends that you use the appropriate module heatspreader as a thermal interface between the module and your application's cooling solution.

If for some reason it is not possible to use the appropriate module heatspreader, then it is the responsibility of the operator to ensure that all components found on the module operate within the component manufacturer's specified temperature range.

# **Block Diagram**

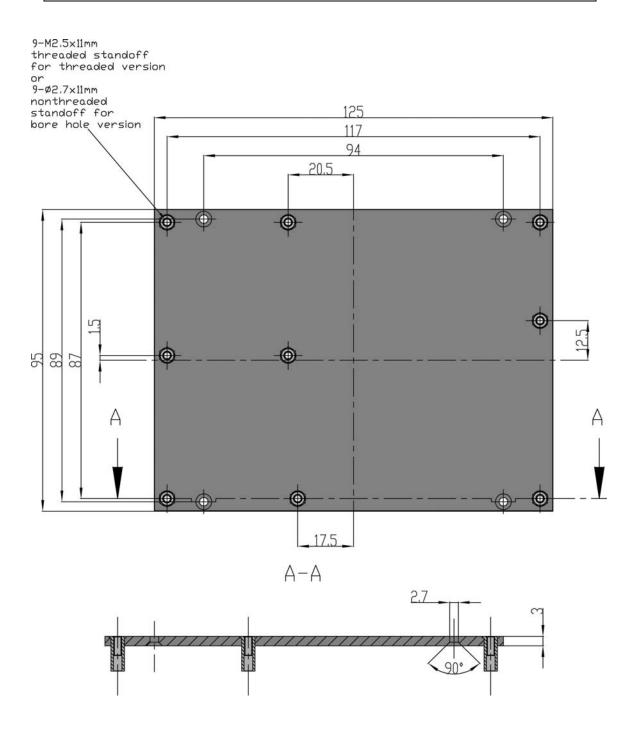


## Heatspreader

An important factor for each system integration is the thermal design. The heatspreader acts as a thermal coupling device to the module. It is a 3mm thick aluminum plate.

The heatspreader is thermally coupled to the CPU via a thermal gap filler and on some modules it may also be thermally coupled to other heat generating components with the use of additional thermal gap fillers.

Although the heatspreader is the thermal interface where most of the heat generated by the module is dissipated, it is not to be considered as a heatsink. It has been designed to be used as a thermal interface between the module and the application specific thermal solution. The application specific thermal solution may use heatsinks with fans, and/or heat pipes, which can be attached to the heatspreader. Some thermal solutions may also require that the heatspreader is attached directly to the systems chassis therefore using the whole chassis as a heat dissipater.


#### **CAUTION**

Attention must be given to the mounting solution used to mount the heatspreader and module into the system chassis. Do not use a threaded heatspreader together with threaded carrier board standoffs. The combination of the two threads may be staggered, which could lead to stripping or cross-threading of the threads in either the standoffs of the heatspreader or carrier board.

# **Heatspreader Dimensions**

Heatspreader is available for all variants of COM 830.

**NOTE** All measurements are in millimeters. Torque specification for heatspreader screws is 0.5 Nm.



# Connector Subsystems Rows A, B, C, D

The COM 830 is connected to the carrier board via two 220-pin connectors (COM Express Type 2 pinout) for a total of 440 pins connectivity. These connectors are broken down into four rows. The primary connector consists of rows A and B while the secondary connector consists of rows C and D.

In this view the connectors are seen "through" the module.

## **Primary Connector Rows A and B**

The following subsystems can be found on the primary connector rows A and B.

## Serial ATA™ (SATA)

Two Serial ATA150 connections are provided via the Intel® 82801GHM (ICH7M-DH). SATA is an enhancement of the parallel ATA therefore offering higher performance. As a result of this enhancement the traditional restrictions of parallel ATA are overcome with respect to speed and EMI. SATA starts with a transfer rate of 150 Mbytes/s and can be expanded up to 600 Mbytes/s in order to accommodate future developments. SATA is completely protocol and software compatible to parallel ATA.

#### **USB 2.0**

The COM 830 offers 4 UHCI USB host controllers and one EHCI USB host controller provided by the Intel® 82801GHM (ICH7M-DH). These controllers comply with USB standard 1.1 and 2.0 and offer a total of 8 USB ports via connector rows A and B.

**NOTE** 

The USB controller is a PCI bus device. The BIOS allocates the necessary system resources when configuring the PCI devices.

## AC'97 Digital Audio Interface/HDA

The COM 830 provides an interface that supports the connection of AC'97 digital audio codecs as well as HDA audio codecs.

## Gigabit Ethernet

The COM 830 is equipped with a Marvell 88E8056 Gigabit Ethernet Controller. This controller is implemented through the use of the sixth x1 PCI Express lane. The Ethernet interface consists of 4 pairs of low voltage differential pair signals designated from GBE0\_MD0 (+ and -) to GBE0\_MD3 (+ and -) plus control signals for link activity indicators. These signals can be used to connect to a 10/100/1000 BaseT RJ45 connector with integrated or external isolation magnetics on the carrier board.

### **LPC Bus**

COM 830 offers the LPC (Low Pin Count) bus through the use of the Intel® 82801GHM (ICH7M-DH). There are already many devices available for this Intel defined bus. The LPC bus corresponds approximately to a serialized ISA bus yet with a significantly reduced number of signals. Due to the software compatibility to the ISA bus, I/O extensions such as additional serial ports can be easily implemented on an application specific baseboard using this bus.

## I<sup>2</sup>C Bus 400kHz

The I<sup>2</sup>C bus is implemented through the use of ATMEL ATmega168 microcontroller. It provides a Fast Mode (400kHz max.) multi-master I<sup>2</sup>C Bus that has maximum I<sup>2</sup>C bandwidth.

## PCI Express™

The COM 830 offers 6x x1 PCI Express lanes via the Intel 82801GHM (ICH7M-DH), which can be configured to support PCI Express edge cards or ExpressCards. One of the six x1 PCI Express lane is utilized by the onboard Ethernet controller therefore there are only 5x x1 PCI Express lanes available on the A,B connector row. The PCI Express interface is based on the *PCI Express Specification 1.0a*.

## **ExpressCard™**

The COM 830 supports the implementation of ExpressCards, which require the dedication of one USB port and one PCI Express lane for each ExpressCard used.

## **Graphics Output (VGA/CRT)**

The COM 830 graphics are driven by an Intel Graphics Media Accelerator 950 engine, which is incorporated into the Intel 82945GM chipset found on the COM 830. This graphic engine offers significantly higher performance than the Intel Extreme Graphics Engine found on other Intel chipsets.

### **LCD**

The Intel 82945GM chipset, found on the COM 830, offers an integrated dual channel LVDS interface that is connected to Display Pipe B.

## **TV-Out**

TV-Out support is integrated into the Intel 82945GM chipset and is supported on both Display Pipe A and Pipe B.

## **Power Control**

## **PWR OK**

Power OK from main power supply. A high value indicates that the power is good. Using this input is optional. Through the use of an internal monitor on the  $+12V \pm 5\%$  input voltage and/or the internal power supplies the COM 830 module is capable of generating its own power-on reset. According to the COM Express PWR\_OK is a 3.3V signal.

The COM 830 provides support for controlling ATX-style power supplies. When not using an ATX power supply then the COM 830's pins SUS\_S3/PS\_ON, 5V\_SB, and PWRBTN# should be left unconnected.

## SUS\_S5#/PS\_ON#

The SUS\_S5#/PS\_ON# (pin A24 on the A-B connector) signal is an active-high output that can be used to turn on the main outputs of an ATX-style power supply. In order to accomplish this the signal must be inverted with an inverter/transistor that is supplied by standby voltage and is located on the carrier board.

## **PWRBTN#**

When using ATX-style power supplies PWRBTN# (pin B12 on the A-B connector) is used to connect to a momentary-contact, active-low debounced pushbutton input while the other terminal on the pushbutton must be connected to ground. This signal is internally pulled up to 3V\_SB using a 10k resistor. When PWRBTN# is asserted it indicates that an operator wants to turn the power on or off. The response to this signal from the system may vary as a result of modifications made in BIOS settings or by system software.

# **Power Supply Implementation Guidelines**

12 volt input power is the sole operational power source for the COM 830. The remaining necessary voltages are internally generated on the module using onboard voltage regulators. A baseboard designer should be aware of the following important information when designing a power supply for a COM 830 application:

It has also been noticed that on some occasions problems occur when using a 12V power supply that produces non monotonic voltage when powered up. The problem is that some internal circuits on the module (e.g. clock-generator chips) will generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused resulting in a malfunction. It must be mentioned that this problem is quite rare but has been observed in some mobile power supply applications. The best way to ensure that this problem is not encountered is to observe the power supply rise waveform through the use of an oscilloscope to determine if the rise is indeed monotonic and does not have any dips. This should be done during the power supply qualification phase therefore ensuring that the above mentioned problem doesn't arise in the application. For more information about this issue visit www.formfactors.org and view page 25 figure 7 of the document "ATX12V Power Supply Design Guide V2.2".

## **Power Management**

APM 1.2 compliant. ACPI 2.0 compliant with battery support. Also supports Suspend to RAM (S3).

## Secondary Connector Rows C and D

The following subsystems can be found on the secondary connector rows C and D.

## **PCI Express Graphics (PEG)**

The COM 830 supports the implementation of a x16 link for an external high-performance PCI Express Graphics card. It supports a theoretical bandwidth of up to 4GB/s. Each lane of the PEG Port consists of a receive and transmit differential signal pair designated from PEG\_RX0 (+ and -) to PEG\_RX15 (+ and -) and correspondingly from PEG\_TX0 (+ and -) to PEG\_RX15 (+ and -). It's also possible to utilize a standardized Advanced Digital Display Card 2nd Generation (ADD2-based on SDVO) via the x16 PEG Port connector, which can support a wide variety of display options like DVI, LVDS, TV-Out and HDMI.

#### **SDVO**

The pins of PEG Port are shared with the Serial Digital Video Ouput (SDVO) functionality and may be alternatively used for two third party SDVO compliant devices connected to channels B and C.

### **PCI Bus**

The implementation of the PCI bus complies with PCI specification Rev. 2.3 and provides a 32bit parallel PCI bus that is capable of operating at 33MHz.

#### **IDE**

The IDE host adapter is capable of UDMA-100 operation. Only the Primary IDE channel is supported.

## **Additional Features**

## Watchdog

The COM 830 is equipped with a multi stage watchdog solution that is triggered by software. The COM Express Specification does not provide support for external hardware triggering of the Watchdog, which means the COM 830 does not support external hardware triggering.

## **Onboard Microcontroller**

The COM 830 is equipped with an ATMEL Atmega168 microcontroller. This onboard microcontroller plays an important role for most of the BIOS features. It fully isolates some of the embedded features such as system monitoring or the I<sup>2</sup>C bus from the x86 core architecture, which results in higher embedded feature performance and more reliability, even when the x86 processor is in a low power mode.

## **Embedded BIOS**

The COM 830 is equipped with Embedded BIOS and has the following features:

**ACPI Power Management** 

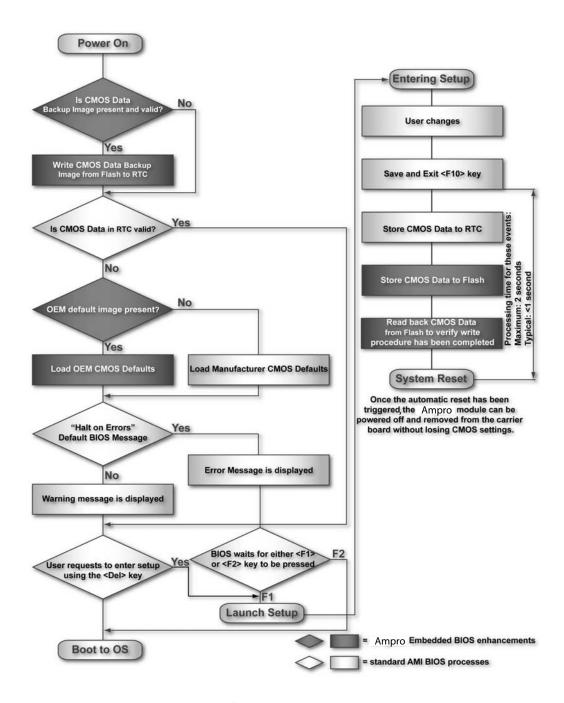
**ACPI Battery Support** 

Supports Customer Specific CMOS Defaults

Multistage Watchdog

User Data Storage

Manufacturing Data and Board Information


**OEM Splash Screen** 

Flat Panel Auto Detection

BIOS Setup Data Backup

Fast Mode I2C Bus

## Simplified Overview of BIOS Setup Data Backup



The above diagram provides an overview of how the BIOS Setup Data is backed up on modules. OEM default values mentioned above refer to customer specific CMOS settings created using the System Utility tool.

Once the BIOS Setup Program has been entered and the settings have been changed, the user saves the settings and exits the BIOS Setup Program using the F10 key feature. After the F10 function has been evoked, the CMOS Data is stored in a dedicated non-volatile CMOS Data Backup area located in the BIOS Flash Memory chip as well as RTC. The CMOS Data is written to and read back from the CMOS Data Backup area and verified. Once verified the F10 Save and Exit function continues to perform some minor processing tasks and finally reaches an automatic reset point, which instructs the module to reboot. After the Automatic Reset has been triggered the module can be powered off and if need be removed from the baseboard without losing the new CMOS settings.

# **Security Features**

The COM 830 can be equipped optionally with a "Trusted Platform Module" (TPM 1.2). This TPM 1.2 includes co-processors to calculate efficient hash and RSA algorithms with key lengths up to 2,048 bits as well as a real random number generator. Security sensitive applications like gaming and e-commerce will benefit also with improved authentication, integrity and confidence levels.

# Suspend to Ram

The Suspend to RAM feature is available on the COM 830.

# **Ampro Tech Notes**

The COM 830 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features. This information will also help to gain a better understanding of the information found in the System Resources section of this manual as well as some of the setup nodes found in the BIOS Setup Program description section.

# Comparison of I/O APIC to 8259 PIC Interrupt mode

I/O APIC (Advanced Programmable Interrupt controller) mode deals with interrupts differently than the 8259 PIC.

The method of interrupt transmission used by APIC mode is implemented by transmitting interrupts through the system bus and they are handled without the requirement of the processor to perform an interrupt acknowledge cycle.

Another difference between I/O APIC and 8259 PIC is the way the interrupt numbers are prioritized. Unlike the 8259 PIC, the I/O APIC interrupt priority is independent of the actual interrupt number.

A major advantage of the I/O APIC found in the chipset of the COM 830 is that it's able to provide more interrupts, a total of 24 to be exact. It must be mentioned that the APIC is not supported by all operating systems. In order to utilize the APIC mode it must be enabled in the BIOS setup program before the installation of the OS and it only functions in ACPI mode. You can find more information about APIC in the IA-32 Intel Architecture Software Developer's Manual, Volume 3 in chapter 8.

**NOTE** You must ensure that your operating system supports APIC mode in order to use it.

# Intel<sup>®</sup> Matrix Storage Technology

The ICH7M-DH provides support for Intel<sup>®</sup> Matrix Storage Technology, providing both AHCI and integrated RAID functionality.

## **AHCI**

The ICH7M-DH provides hardware support for Advanced Host Controller Interface (AHCI), a new programming interface for SATA host controllers. Platforms supporting AHCI may take advantage of performance features such as no master/slave designation for SATA devices (each device is treated as a master) and hardware-assisted native command queuing. AHCI also provides usability enhancements such as Hot-Plug.

### **RAID**

The industry-leading RAID capability provides high performance RAID 0 and 1 functionality on the 2 SATA ports of ICH7M-DH. Software components include an Option ROM for pre-boot configuration and boot functionality, a Microsoft\* Windows\* compatible driver, and a user interface for configuration and management of the RAID capability of ICH7M-DH.

# Native vs. Compatible IDE mode

## **Compatible Mode**

When operating in compatible mode, the SATA and PATA (Parallel ATA) controller together need two legacy IRQs (14 and 15) and are unable to share these IRQs with other devices. This is a result of the fact that the SATA and PATA controller emulate legacy IDE controllers.

#### **Native Mode**

Native mode allows the SATA and PATA controllers to operate as true PCI devices and therefore do not need dedicated legacy resources, which means it can be configured anywhere within the system. When either the SATA or PATA controller runs in native mode it only requires one PCI interrupt for both channels and also has the ability to share this interrupt with other devices in the system. Setting Enhanced mode in the BIOS setup program will automatically enable Native mode as Native mode is a subset of Enhanced mode.

Running in native mode frees up interrupt resources (IRQs 14 and 15) and decreases the chance that there may be a shortage of interrupts when installing devices.

**NOTE** 

If your operating system supports native mode then Ampro recommends you enable it.

# Intel<sup>®</sup> Processor Features

## **Thermal Monitor and Catastrophic Thermal Protection**

Intel<sup>®</sup> Core<sup>TM</sup> 2 Duo, Core<sup>TM</sup> Duo and Celeron M processors have a thermal monitor feature that helps to control the processor temperature. The integrated TCC (Thermal Control Circuit) activates if the processor silicon reaches its maximum operating temperature. The activation temperature, that the Intel Thermal Monitor uses to activate the TCC, cannot be configured by the user nor is it software visible.

The Thermal Monitor can control the processor temperature through the use of two different methods defined as TM1 and TM2. TM1 method consists of the modulation (starting and stopping) of the processor clocks at a 50% duty cycle. The TM2 method initiates an Enhanced Intel Speedstep transition to the lowest performance state once the processor silicon reaches the maximum operating temperature.

**NOTE** 

The maximum operating temperature for Intel Core<sup>TM</sup> 2 Duo, Core<sup>TM</sup> Duo and Celeron M processors is 100°C. TM2 mode is used for Intel Core 2 Duo and Core Duo processors, it is not supported by Intel Celeron M processors.

Two modes are supported by the Thermal Monitor to activate the TCC. They are called Automatic and On-Demand. No additional hardware, software, or handling routines are necessary when using Automatic Mode.

NOTE

To ensure that the TCC is active for only short periods of time thus reducing the impact on processor performance to a minimum, it is necessary to have a properly designed thermal solution. The Intel Core 2 Duo,  $Core^{TM}$  Duo and Celeron M processor's respective datasheet can provide you with more information about this subject.

THERMTRIP# signal is used by Intel's Intel Core 2 Duo, Core Duo and Celeron M processors for catastrophic thermal protection. If the processor's silicon reaches a temperature of approximately 125°C then the processor signal THERMTRIP# will go active and the system will automatically shut down to prevent

any damage to the processor as a result of overheating. The THERMTRIP# signal activation is completely independent from processor activity and therefore does not produce any bus cycles.

NOTE

In order for THERMTRIP# to be able to automatically switch off the system it is necessary to use an ATX style power supply.

## **Processor Performance Control**

Intel<sup>®</sup> Core<sup>TM</sup> 2 Duo and Core<sup>TM</sup> Duo processors run at different voltage/frequency states (performance states), which is referred to as Enhanced Intel<sup>®</sup> SpeedStep<sup>®</sup> technology (EIST). Operating systems that support performance control take advantage of microprocessors that use several different performance states in order to efficiently operate the processor when it is not being fully utilized. The operating system will determine the necessary performance state that the processor should run at so that the optimal balance between performance and power consumption can be achieved during runtime.

The Windows family of operating systems links its processor performance control policy to the power scheme setting found in the control panel option applet.

NOTE

If the "Home/Office" or "Always On" power scheme is selected when using Windows operating systems then the processor will always run at the highest performance state. For more information about this subject see chapter 8 of the ACPI Specification Revision 2.0c, which can be found at www.acpi.info. Also visit Microsoft's website and search for the document called "Windows Native Processor Performance Control".

The Ampro BIOS allows you to limit the maximum processor frequency. This can be useful if the maximum performance is not required or if the maximum processor performance state dissipates too much power and heat.

In the 'CPU Configuration' submenu of the 'BIOS Setup Program' you'll find the node for 'Max. Frequency' limitation. For each Intel Core 2 Duo and Core Duo processor the BIOS lists the supported frequencies. If a lower frequency than the maximum one is selected, the processor will never run at frequencies above this setting.

Celeron M processors do not support Enhanced Intel SpeedStep<sup>®</sup> technology. They always run at a fixed frequency. In order to limit the performance and power consumption of Celeron M processors, the BIOS offers 'On-Demand Clock Modulation' support in the 'CPU Configuration' submenu of the 'BIOS Setup Program'. When 'On-Demand Clock Modulation' is enabled, the processor clock is throttled using the duty cycle determined in setup. Keep in mind that the 'On-Demand' clock modulation duty cycle indicates that the clock on to clock off interval ratio. This means that when set to 75% the clock is running 75% of the overall time and this leads to a performance decrease of approximately 25%.

## Intel 64

The formerly known Intel Extended Memory 64 Technology is an enhancement to Intel's IA-32 architecture. Intel 64 is only available on Core 2 Duo processors and is designed to run newly written 64-bit code and access more than 4GB of memory. Processors with Intel 64 architecture support 64-bit-capable operating systems from Microsoft and Red Hat. Processors running in legacy mode remain fully compatible with today's existing 32-bit applications and operating systems.

Platforms with Intel 64 can be run in three basic ways:

- 1. **Legacy Mode:** 32-bit operating system and 32-bit applications. In this mode no software changes are required, however the benefits of Intel 64 are not utilized.
- 2. Compatibility Mode: 64-bit operating system and 32-bit applications. This mode requires all device drivers to be 64-bit. The operating system will see the 64-bit extensions but the 32-bit application will not. Existing 32-bit applications do not need to be recompiled and may or may not benefit from the 64-bit extensions. The application will likely need to be re-certified by the vendor to run on the new 64-bit extended operating system.

3. **64-bit Mode:** 64-bit operating system and 64-bit applications. This usage requires 64-bit device drivers. It also requires applications to be modified for 64-bit operation and then recompiled and validated.

Intel 64 provides support for:

64-bit flat virtual address space

64-bit pointers

64-bit wide general purpose registers

64-bit integer support

Up to one Terabyte (TB) of platform address space

You can find more information about Intel 64 Technology at: http://developer.intel.com/technology/intel64/index.htm

NOTE

Ampro does not intend to offer BSPs for 64-bit operating systems. Contact technical support if you plan to use a 64-bit operating system on the COM 830.

# Intel® Virtualization Technology

Virtualization solutions enhanced by Intel VT will allow a Core Duo and Core 2 Duo platform to run multiple operating systems and applications in independent partitions. When using virtualization capabilities, one computer system can function as multiple "virtual" systems. With processor and I/O enhancements to Intel's various platforms, Intel Virtualization Technology can improve the performance and robustness of today's software-only virtual machine solutions.

Intel VT is a multi-generational series of extensions to Intel processor and platform architecture that provides a new hardware foundation for virtualization, establishing a common infrastructure for all classes of Intel based systems. The broad availability of Intel VT makes it possible to create entirely new applications for virtualization in servers, clients as well as embedded systems thus providing new ways to improve system reliability, manageability, security, and real-time quality of service.

The success of any new hardware architecture is highly dependent on the system software that puts its new features to use. In the case of virtualization technology, that support comes from the virtual machine monitor (VMM), a layer of software that controls the underlying physical platform resources sharing them between multiple "guest" operating systems. Intel VT is already incorporated into most commercial and open-source VMMs including those from VMware, Microsoft, XenSource, Parallels, Virtual Iron, Jaluna and TenAsys.

You can find more information about Intel Virtualization Technology at: http://developer.intel.com/technology/virtualization/index.htm

NOTE

Ampro does not offer virtual machine monitor (VMM) software. All VMM software support questions and queries should be directed to the VMM software vendor and not technical support.

## **Thermal Management**

ACPI is responsible for allowing the operating system to play an important part in the system's thermal management. This results in the operating system having the ability to take control of the operating environment by implementing cooling decisions according to the demands put on the CPU by the application.

The COM 830 ACPI thermal solution offers three different cooling policies.

#### **Passive Cooling**

When the temperature in the thermal zone must be reduced, the operating system can decrease the power consumption of the processor by throttling the processor clock. One of the advantages of this cooling policy is that passive cooling devices (in this case the processor) do not produce any noise. Use the "passive cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start or stop the passive cooling procedure.

## **Active Cooling**

During this cooling policy the operating system is turning the fan on/off. Although active cooling devices consume power and produce noise, they also have the ability to cool the thermal zone without having to reduce the overall system performance. Use the "active cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start the active cooling device. It is stopped again when the temperature goes below the threshold (5°C hysteresis).

### **Critical Trip Point**

If the temperature in the thermal zone reaches a critical point then the operating system will perform a system shut down in an orderly fashion in order to ensure that there is no damage done to the system as result of high temperatures. Use the "critical trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to shut down the system.

## **NOTE**

The end user must determine the cooling preferences for the system by using the setup nodes in the BIOS setup program to establish the appropriate trip points.

If passive cooling is activated and the processor temperature is above the trip point the processor clock is throttled according to the formula below.

$$\Delta P[\%] = TC1(T_n-T_{n-1}) + TC2(T_n-T_t)$$

 $\Delta P$  is the performance delta

 $T_t$  is the target temperature = critical trip point.

The two coefficients TC1 and TC2 and the sampling period TSP are hardware dependent constants. These constants are set to fixed values for the COM 830:

TC1=1

TC2=5

TSP= 5 seconds

See section 12 of the ACPI Specification 2.0 C for more information about passive cooling.

# **ACPI Suspend Modes and Resume Events**

COM 830 supports the S1 (POS= Power On Suspend) state and S3 (STR= Suspend to RAM). For more information about S3 wake events see section "ACPI Configuration Submenu".

S4 (Suspend to Disk) is not supported by the BIOS (S4\_BIOS) but it is supported by the following operating systems (S4\_OS= Hibernate):

Win2K

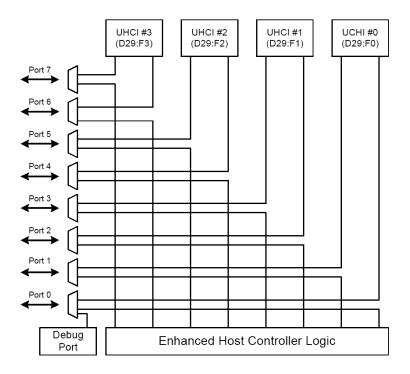
WinXP

The following table lists the "Wake Events" that resume the system from both S1 or S3 unless otherwise stated in the "Conditions/Remarks" column:

| Wake Event   | Conditions/Remarks                                                                                                                                                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Button | Wakes unconditionally from S1-S5.                                                                                                                                                                                                                                                       |
| GPI1#        | Only if configured as Lid Switch in the ACPI setup menu. Additionally the lid button has to be activated using the Windows Power Options. The best way to use it is to go to Standby (see note below) on lid button press and wake from Standby (see note below) on lid button release. |

| GPI2#                          | Set GPE2 Function node to Sleep Button in the ACPI setup menu or set Resume On Ring to Enabled in the Power setup menu.                                                                                                                             |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Onboard LAN Event              | Device driver must be configured for Wake On LAN support.                                                                                                                                                                                           |
| SMBALERT#                      | Wakes unconditionally from S1-S5.                                                                                                                                                                                                                   |
|                                | •                                                                                                                                                                                                                                                   |
| PCI Express<br>WAKE#           | Wakes unconditionally from S1-S3.                                                                                                                                                                                                                   |
| PME#                           | Activate the wake up capabilities of a PCI device using Windows Device Manager configuration options for this device OR set Resume On PME# to Enabled in the Power setup menu.                                                                      |
| USB Mouse/<br>Keyboard Event   | When Standby mode is set to S1, no special action must be taken for a USB Mouse/Keyboard Event to be used as a Wake Event.                                                                                                                          |
|                                | When Standby mode is set to S3, the following must be done for a USB Mouse/Keyboard Event to be used as a Wake Event.                                                                                                                               |
|                                | USB Hardware must be powered by standby power source.                                                                                                                                                                                               |
|                                | Set USB Device Wakeup from S3/S4 to ENABLED in the ACPI setup menu.                                                                                                                                                                                 |
|                                | Under Windows XP add following registry entries:                                                                                                                                                                                                    |
|                                | Add this key:                                                                                                                                                                                                                                       |
|                                | HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\usb                                                                                                                                                                                            |
|                                | Under this key add the following value:                                                                                                                                                                                                             |
|                                | "USBBIOSx"=DWORD:00000000                                                                                                                                                                                                                           |
|                                | Note that Windows XP disables USB wakeup from S3, so this entry has to be added to re-enable it.                                                                                                                                                    |
|                                | Configure USB keyboard/mouse to be able to wake up the system:                                                                                                                                                                                      |
|                                | In Device Manager look for the keyboard/mouse devices. Go to the Power Management tab and check 'Allow this device to bring the computer out of standby'.                                                                                           |
|                                | Note: When the standby state is set to S3 in the ACPI setup menu, the power management tab for USB keyboard /mouse devices only becomes available after adding the above registry entry and rebooting to allow the registry changes to take affect. |
| RTC Alarm                      | Activate and configure Resume On RTC Alarm in the Power setup menu.                                                                                                                                                                                 |
| Watchdog Power<br>Button Event | Wakes unconditionally from S1-S5.                                                                                                                                                                                                                   |

# **NOTE** The above list has been verified using a Windows XP SP2 ACPI enabled installation.


When using Windows XP, Standby mode is either an S1 state or S3 state depending on what has been selected in the ACPI Configuration Menu in the BIOS setup program.

# **USB 2.0 EHCI Host Controller Support**

The 8 USB ports are shared between an EHCI host controller and the 4 UHCI host controllers.

Within the EHC functionality there is a port-routing logic that executes the mixing between the two different types of host controllers (EHCI and UHCI). This means that when a USB device is connected the routing logic determines who owns the port. If the device is not USB 2.0 compliant, or if the software drivers for EHCI support are not installed, then the UHCI controller owns the ports.

## **Routing Diagram:**



# **Chapter 3** Signals and Pinout Tables

The following section describes the signals found on COM Express $^{\mathrm{TM}}$  Type II connectors used for Ampro modules.

The table below describes the terminology used in this section for the Signal Description tables. The PU/PD column indicates if a COM Express internal pull-up or pull-down resistor has been used. If the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

**Table 3-1. Signal Tables Terminology Descriptions** 

| Term       | Description                                                                                                                                                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PU         | COM Express internally implemented Pull up resistor                                                                                                         |
| PD         | COM Express internally implemented Pull down resistor                                                                                                       |
| I/O 3.3V   | Bi-directional signal 3.3V tolerant                                                                                                                         |
| I/O 5V     | Bi-directional signal 5V tolerant                                                                                                                           |
| I 3.3V     | Input 3.3V tolerant                                                                                                                                         |
| I 5V       | Input 5V tolerant                                                                                                                                           |
| I/O 3.3VSB | Input 3.3V tolerant active in standby state                                                                                                                 |
| O 3.3V     | Output 3.3V signal level                                                                                                                                    |
| O 5V       | Output 5V signal level                                                                                                                                      |
| OD         | Open drain output                                                                                                                                           |
| P          | Power Input/Output                                                                                                                                          |
| DDC        | Display Data Channel                                                                                                                                        |
| PCIE       | In compliance with PCI Express Base Specification, Revision 1.0a                                                                                            |
| SATA       | In compliance with Serial ATA specification, Revision 1.0a                                                                                                  |
| REF        | Reference voltage output. May be sourced from a module power plane.                                                                                         |
| PDS        | Pull-down strap. A module output pin that is either tied to GND or is not connected. Used to signal module capabilities (pinout type) to the Carrier Board. |

# **A-B Connector Signal Descriptions**

Table 3-2.  $\mbox{AC'97/Intel}^{\mbox{\scriptsize B}}$  High Definition Audio Link Signals Descriptions

| Signal           | Description                                                                                                                                                                                                                   | I/O              | PU/PD | Comment                                                          |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------------------------------------------------------|
| AC_RST#          | <b>AC '97/Intel High Definition Audio Reset:</b> This signal is the master hardware reset to external codec(s).                                                                                                               | O 3.3V           |       |                                                                  |
| AC_SYN<br>C      | AC '97/Intel High Definition Audio Sync: This signal is a 48 kHz fixed rate sample sync to the codec(s). It is also used to encode the stream number.                                                                         | O 3.3V           |       | AC_SYN C is a boot strap signal (see note below)                 |
| AC_BIT_<br>CLK   | AC '97 Bit Clock Input: This signal is a 12.288 MHz serial data clock generated by the external codec(s). This signal has an Intel integrated pull-down resistor.                                                             | I 3.3V<br>O 3.3V |       |                                                                  |
|                  | <b>Intel High Definition Audio Bit Clock Output:</b> This signal is a 24.000MHz serial data clock generated by the Intel High Definition Audio controller (the Intel                                                          |                  |       |                                                                  |
|                  | ICH7M-DH). This signal has an Intel integrated pull-down resistor so that AC_BIT_CLK doesn't float when an Intel High Definition Audio codec (or no codec) is connected but the signals are temporarily configured as AC '97. |                  |       |                                                                  |
| AC_SDO<br>UT     | AC '97/Intel High Definition Audio Serial Data Out: This signal is the serial TDM data output to the codec(s). This serial output is double-pumped for a bit rate of 48 Mb/s for Intel High Definition Audio.                 | O 3.3V           |       | AC_SDO<br>UT is a<br>boot strap<br>signal (see<br>note<br>below) |
| AC_SDIN<br>[2:0] | AC '97//Intel High Definition Audio Serial Data In [0]: These signals are serial TDM data inputs from the three codecs. The serial input is single-pumped for a bit rate of 24 Mb/s for Intel High Definition Audio.          | I 3.3V           |       |                                                                  |

**NOTE** Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module.

AC\_SYNC and AC\_SDOUT can be used to switch PCI Express channels 1-4 between x1 and x4 mode. If both signals are each pulled-up (using 1k resistors) to 3.3V at the rising edge of PWROK then x4 mode is enabled. x1 mode is used by default if these resistors are not populated.

Table 3-3. Gigabit Ethernet Signal Descriptions

| Gigabit Ethernet                 | Description                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |       |       | I/O           | PU/PD                                         | Comment                                        |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|-------|---------------|-----------------------------------------------|------------------------------------------------|
| GBE0_MDI[0:3]+<br>GBE0_MDI[0:3]- | Gigabit Ethernet Controller 0: Media Dependent Interface Differential Pairs 0, 1, 2, 3. The MDI can operate in 1000, 100, and 10Mbit/sec modes. Some pairs are unused in some modes according to the following:                                                                                                                                                                   |                                                                        |       |       | I/O<br>Analog |                                               | Twisted pair signals for external transformer. |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                   | 1000                                                                   | 100   | 10    |               |                                               |                                                |
|                                  | MDI[0]+/-                                                                                                                                                                                                                                                                                                                                                                         | B1_DA+/-                                                               | TX+/- | TX+/- |               |                                               |                                                |
|                                  | MDI[1]+/-                                                                                                                                                                                                                                                                                                                                                                         | B1_DB+/-                                                               | RX+/- | RX+/- |               |                                               |                                                |
|                                  | MDI[2]+/-                                                                                                                                                                                                                                                                                                                                                                         | B1_DC+/-                                                               |       |       |               |                                               |                                                |
|                                  | MDI[3]+/-                                                                                                                                                                                                                                                                                                                                                                         | B1_DD+/-                                                               |       |       |               |                                               |                                                |
| GBE0_ACT#                        | Gigabit Ethernet Controller 0 activity indicator, active low.                                                                                                                                                                                                                                                                                                                     |                                                                        |       | OD    |               |                                               |                                                |
| GBE0_LINK#                       | Gigabit Ethernet Controller 0 link indicator, active low.                                                                                                                                                                                                                                                                                                                         |                                                                        |       | OD    |               |                                               |                                                |
| GBE0_LINK100#                    | Gigabit Ethernet Controller 0 100Mbit/sec link indicator, active low.                                                                                                                                                                                                                                                                                                             |                                                                        |       | OD    |               |                                               |                                                |
| GBE0_LINK1000#                   |                                                                                                                                                                                                                                                                                                                                                                                   | Gigabit Ethernet Controller 0 1000Mbit/sec link indicator, active low. |       |       | OD            |                                               |                                                |
| GBE0_CTREF                       | Reference voltage for Carrier Board Ethernet channel 0 magnetics center tap. The reference voltage is determined by the requirements of the module PHY and may be as low as 0V and as high as 3.3V.  The reference voltage output shall be current limited on the module. In the case in which the reference is shorted to ground, the current shall be limited to 250mA or less. |                                                                        |       | REF   |               | Reference<br>voltage on<br>COM 830<br>is 1.8V |                                                |

Table 3-4. Serial ATA Signal Descriptions

| Signal                 | Description                                                 | I/O    | PU/PD | Comment                                          |
|------------------------|-------------------------------------------------------------|--------|-------|--------------------------------------------------|
| SATA0_RX+<br>SATA0_RX- | Serial ATA channel 0, Receive Input differential pair.      | I SATA |       | Supports Serial ATA specification, Revision 1.0a |
| SATA0_TX+<br>SATA0_TX- | Serial ATA channel 0, Transmit Output differential pair.    | O SATA |       | Supports Serial ATA specification, Revision 1.0a |
| SATA1_RX+<br>SATA1_RX- | Serial ATA channel 1, Receive Input differential pair.      | I SATA |       | Supports Serial ATA specification, Revision 1.0a |
| SATA1_TX+<br>SATA1_TX- | Serial ATA channel 1, Transmit<br>Output differential pair. | O SATA |       | Supports Serial ATA specification, Revision 1.0a |

Table 3-4. Serial ATA Signal Descriptions (Continued)

| SATA2_RX+<br>SATA2_RX- | Serial ATA channel 2, Receive Input differential pair.           | I SATA  | Not supported                                          |
|------------------------|------------------------------------------------------------------|---------|--------------------------------------------------------|
| SATA2_TX+<br>SATA2_TX- | Serial ATA channel 2, Transmit Output differential pair.         | O SATA  | Not supported                                          |
| SATA3_RX+<br>SATA3_RX- | Serial ATA channel 3, Receive Input differential pair.           | I SATA  | Not supported                                          |
| SATA3_TX+<br>SATA3_TX- | Serial ATA channel 3, Transmit<br>Output differential pair.      | O SATA  | Not supported                                          |
| ATA_ACT#               | ATA (parallel and serial) or SAS activity indicator, active low. | OC 3.3V | ATA_ACT# is a<br>boot strap signal<br>(see note below) |

**NOTE** Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module.

Table 3-5. PCI Express Signal Descriptions [general purpose]

| Signal                 | Description                                              | I/O       | PU/PD | Comment                                                         |
|------------------------|----------------------------------------------------------|-----------|-------|-----------------------------------------------------------------|
| PCIE0_RX+<br>PCIE0_RX- | PCI Express channel 1, Receive Input differential pair   | I<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE0_TX+<br>PCIE0_TX- | PCI Express channel 1, Transmit Output differential pair | O<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE1_RX+<br>PCIE1_RX- | PCI Express channel 2, Receive Input differential pair   | I<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE1_TX+<br>PCIE1_TX- | PCI Express channel 2, Transmit Output differential pair | O<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE2_RX+<br>PCIE2_RX- | PCI Express channel 3, Receive Input differential pair   | I<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE2_TX+<br>PCIE2_TX- | PCI Express channel 3, Transmit Output differential pair | O<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE3_RX+<br>PCIE3_RX- | PCI Express channel 4, Receive Input differential pair   | I<br>PCIE |       | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |

Table 3-5. PCI Express Signal Descriptions [general purpose] (Continued)

| PCIE3_TX+<br>PCIE3_TX-                 | PCI Express channel 4, Transmit Output differential pair                                    | O<br>PCIE |          | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
|----------------------------------------|---------------------------------------------------------------------------------------------|-----------|----------|-----------------------------------------------------------------|
| PCIE4_RX+<br>PCIE4_RX-                 | PCI Express channel 5, Receive Input differential pair                                      | I<br>PCIE |          | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE4_TX+<br>PCIE4_TX-                 | PCI Express channel 5, Transmit Output differential pair                                    | O<br>PCIE |          | Supports PCI<br>Express Base<br>Specification,<br>Revision 1.0a |
| PCIE5_RX+<br>PCIE5_RX-                 | PCI Express channel 6, Receive Input differential pair                                      | I<br>PCIE |          | Not available.<br>Used by<br>onboard Gigabit<br>Ethernet.       |
| PCIE5_TX+<br>PCIE5_TX-                 | PCI Express channel 6, Transmit Output differential pair                                    | O<br>PCIE |          | Not available.<br>Used by<br>onboard Gigabit<br>Ethernet.       |
| PCIE_CLK_RE<br>F+<br>PCIE_CLK_RE<br>F- | PCI Express Reference Clock output for all<br>PCI Express and PCI Express Graphics<br>Lanes | O<br>PCIE | PD 49.9R |                                                                 |

Table 3-6. ExpressCard Support Pins Descriptions

| Signal                           | Description                      | I/O         | PU/PD            | Comment |
|----------------------------------|----------------------------------|-------------|------------------|---------|
| EXCD[01]_CPPE<br>#               | ExpressCard capable card request | I<br>3.3VSB | PU 8k2<br>3.3VSB |         |
| EXCD[01]_RST# (EXCD[01]_PER ST#) | ExpressCard Reset                | O 3.3V      | PU 10k<br>3.3V   |         |

Table 3-7. LPC Signal Descriptions

| Signal        | Description                                   | I/O      | PU/PD          | Comment |
|---------------|-----------------------------------------------|----------|----------------|---------|
| LPC_AD[0:3]   | LPC multiplexed address, command and data bus | I/O 3.3V |                |         |
| LPC_FRAME#    | LPC frame indicates the start of an LPC cycle | O 3.3V   |                |         |
| LPC_DRQ[0:1]# | LPC serial DMA request                        | I 3.3V   | PU 10k<br>3.3V |         |
| LPC_SERIRQ    | LPC serial interrupt                          | I/O 3.3V | PU 10k<br>3.3V |         |
| LPC_CLK       | LPC clock output - 33MHz nominal              | O 3.3V   |                |         |

Table 3-8. USB Signal Descriptions

| Signal | Description              | I/O | PU/PD | Comment                                               |
|--------|--------------------------|-----|-------|-------------------------------------------------------|
| USB0+  | USB Port 0, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB0-  | USB Port 0, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB1+  | USB Port 1, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB1-  | USB Port 1, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB2+  | USB Port 2, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB2-  | USB Port 2, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB3+  | USB Port 3, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB3-  | USB Port 3, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB4+  | USB Port 4, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB4-  | USB Port 4, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB5+  | USB Port 5, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB5-  | USB Port 5, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB6+  | USB Port 6, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB6-  | USB Port 6, data - or D- | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |
| USB7+  | USB Port 7, data + or D+ | I/O |       | USB 2.0 compliant and backwards compatible to USB 1.1 |

Table 3-8. USB Signal Descriptions (Continued)

| USB7-       | USB Port 7, data - or D-                                                                                                                                                                                                                                                      | I/O         |                  | USB 2.0 compliant and backwards compatible to USB 1.1 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------------------------------------------------|
| USB_0_1_OC# | USB over-current sense,<br>USB ports 0 and 1. A pull-<br>up for this line shall be<br>present on the module. An<br>open drain driver from a<br>USB current monitor on<br>the carrier board may<br>drive this line low. Do not<br>pull this line high on the<br>carrier board. | I<br>3.3VSB | PU 10k<br>3.3VSB |                                                       |
| USB_2_3_OC# | USB over-current sense,<br>USB ports 2 and 3. A pull-<br>up for this line shall be<br>present on the module. An<br>open drain driver from a<br>USB current monitor on<br>the carrier board may<br>drive this line low. Do not<br>pull this line high on the<br>carrier board. | I<br>3.3VSB | PU 10k<br>3.3VSB |                                                       |
| USB_4_5_OC# | USB over-current sense,<br>USB ports 4 and 5. A pull-<br>up for this line shall be<br>present on the module. An<br>open drain driver from a<br>USB current monitor on<br>the carrier board may<br>drive this line low. Do not<br>pull this line high on the<br>carrier board. | I<br>3.3VSB | PU 10k<br>3.3VSB |                                                       |
| USB_6_7_OC# | USB over-current sense,<br>USB ports 6 and 7. A pull-<br>up for this line shall be<br>present on the module. An<br>open drain driver from a<br>USB current monitor on<br>the carrier board may<br>drive this line low. Do not<br>pull this line high on the<br>carrier board. | I<br>3.3VSB | PU 10k<br>3.3VSB |                                                       |

Table 3-9. CRT Signal Descriptions

| Signal  | Description                                   | I/O    | PU/PD   | Comment       |
|---------|-----------------------------------------------|--------|---------|---------------|
| VGA_RED | Red for monitor. Analog DAC output,           | О      | PD 150R | Analog output |
|         | designed to drive a 37.5-Ohm equivalent load. | Analog |         |               |
| VGA_GRN | Green for monitor. Analog DAC output,         | О      | PD 150R | Analog output |
|         | designed to drive a 37.5-Ohm equivalent load. | Analog |         |               |

Table 3-9. CRT Signal Descriptions (Continued)

| VGA_BLU         | Blue for monitor. Analog DAC output, designed to drive a 37.5-Ohm equivalent load.    | O<br>Analog | PD 150R      | Analog output |
|-----------------|---------------------------------------------------------------------------------------|-------------|--------------|---------------|
| VGA_HSYN<br>C   | Horizontal sync output to VGA monitor                                                 | O 3.3V      |              |               |
| VGA_VSYN<br>C   | Vertical sync output to VGA monitor                                                   | O 3.3V      |              |               |
| VGA_I2C_C<br>K  | DDC clock line (I <sup>2</sup> C port dedicated to identify VGA monitor capabilities) | I/O 5V      | PU 2k2<br>5V |               |
| VGA_I2C_D<br>AT | DDC data line.                                                                        | I/O 5V      | PU 2k2<br>5V |               |

Table 3-10. LVDS Signal Descriptions

| Signal                       | Description                                          | I/O         | PU/PD          | Comment |
|------------------------------|------------------------------------------------------|-------------|----------------|---------|
| LVDS_A[0:3]+<br>LVDS_A[0:3]- | LVDS Channel A differential pairs                    | O<br>LVDS   |                |         |
| LVDS_A_CK+<br>LVDS_A_CK-     | LVDS Channel A differential clock                    | O<br>LVDS   |                |         |
| LVDS_B[0:3]+<br>LVDS_B[0:3]- | LVDS Channel B differential pairs                    | O<br>LVDS   |                |         |
| LVDS_B_CK+<br>LVDS_B_CK-     | LVDS Channel B differential clock                    | O<br>LVDS   |                |         |
| LVDS_VDD_EN                  | LVDS panel power enable                              | O 3.3V      | PD 10k         |         |
| LVDS_BKLT_E<br>N             | LVDS panel backlight enable                          | O 3.3V      |                |         |
| LVDS_BKLT_C<br>TRL           | LVDS panel backlight brightness control              | O 3.3V      |                |         |
| LVDS_I2C_CK                  | DDC lines used for flat panel detection and control. | O 3.3V      | PU 2k2<br>3.3V |         |
| LVDS_I2C_DAT                 | DDC lines used for flat panel detection and control. | I/O<br>3.3V | PU 2k2<br>3.3V |         |

Table 3-11. TV-Out Signal Descriptions

| Signal   | Description                                                                                                                            | I/O         | PU/PD   | Commen<br>t      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|------------------|
| TV_DAC_A | TVDAC Channel A Output supports the following: Composite video: CVBS Component video: Chrominance (Pb) analog signal S-Video: not used | O<br>Analog | PD 150R | Analog<br>output |

**Table 3-11. TV-Out Signal Descriptions (Continued)** 

| TV_DAC_B | TVDAC Channel B Output supports the                                                                                 | О           | PD 150R | Analog           |
|----------|---------------------------------------------------------------------------------------------------------------------|-------------|---------|------------------|
|          | following: Composite video: not used<br>Component video: Luminance (Y) analog<br>signal.                            | Analog      |         | output           |
|          | S-Video: Luminance analog signal.                                                                                   |             |         |                  |
| TV_DAC_C | TVDAC Channel C Output supports the following: Composite video: not used Component: Chrominance (Pr) analog signal. | O<br>Analog | PD 150R | Analog<br>output |
|          | S-Video: Chrominance analog signal.                                                                                 |             |         |                  |

Table 3-12. Miscellaneous Signal Descriptions

| Signal            | Description                                                                                                                                                                                                                                     | I/O         | PU/PD          | Comment                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------------------------------------------------------|
| I2C_CK            | General purpose I <sup>2</sup> C port clock output                                                                                                                                                                                              | O 3.3V      | PU 4k7<br>3.3V |                                                               |
| I2C_DAT           | General purpose I <sup>2</sup> C port data I/O line                                                                                                                                                                                             | I/O<br>3.3V | PU 4k7<br>3.3V |                                                               |
| SPKR              | Output for audio enunciator, the "speaker" in PC-AT systems                                                                                                                                                                                     | O 3.3V      |                | SPEAKER<br>is a boot<br>strap signal<br>(see note 1<br>below) |
| BIOS_DISABLE<br># | Module BIOS disable input. Pull low to disable module BIOS. Used to allow off-module BIOS implementations.                                                                                                                                      | I 3.3V      | PU 4k7<br>3.3V |                                                               |
| WDT               | Output indicating that a watchdog time-out event has occurred.                                                                                                                                                                                  | I 3.3V      | PU 10k<br>3.3V | This signal<br>is not<br>supported<br>(see note 2<br>below)   |
| KBD_RST#          | Input to module from (optional) external keyboard controller that can force a reset. Pulled high on the module. This is a legacy artifact of the PC-AT.                                                                                         | I           | PU 10k<br>3.3V |                                                               |
| KBD_A20GATE       | Input to module from (optional) external keyboard controller that can be used to control the CPU A20 gate line. The A20GATE restricts the memory access to the bottom megabyte and is a legacy artifact of the PC-AT. Pulled low on the module. | I           | PU 10k<br>3.3V |                                                               |

**NOTE** Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module.

For more information about this signal, please visit Ask an Expert on the Ampro web site.

Table 3-13. General Purpose I/O Signal Descriptions

| Signal | Description                                                                      | I/O      | PU/PD            | Commen<br>t |
|--------|----------------------------------------------------------------------------------|----------|------------------|-------------|
| GPO[0] | General purpose output pins. Upon a hardware reset, these outputs should be low. | O 3.3VSB | PU 10k<br>3.3VSB |             |
| GPO[1] | General purpose output pins. Upon a hardware reset, these outputs should be low. | O 3.3VSB | PU 10k<br>3.3VSB |             |
| GPO[2] | General purpose output pins. Upon a hardware reset, these outputs should be low. | O 3.3VSB | PU 10k<br>3.3VSB |             |
| GPO[3] | General purpose output pins. Upon a hardware reset, these outputs should be low. | O 3.3VSB | PU 10k<br>3.3VSB |             |
| GPI[0] | General purpose input pins. Pulled high internally on the module.                | I 3.3VSB | PU 10k<br>3.3VSB |             |
| GPI[1] | General purpose input pins. Pulled high internally on the module.                | I 3.3VSB | PU 10k<br>3.3VSB |             |
| GPI[2] | General purpose input pins. Pulled high internally on the module.                | I 3.3VSB | PU 10k<br>3.3VSB |             |
| GPI[3] | General purpose input pins. Pulled high internally on the module.                | I 3.3VSB | PU 10k<br>3.3VSB |             |

Table 3-14. Power and System Management Signal Descriptions

| Signal         | Description                                                                                                                                                                                                                                                                       | I/O      | PU/PD            | Comment                                 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------------------------------------|
| PWRBTN#        | Power button to bring system out of S5 (soft off), active on rising edge.                                                                                                                                                                                                         | I 3.3VSB | PU 10k<br>3.3VSB |                                         |
| SYS_RESET<br># | Reset button input. Active low input. System is held in hardware reset while this input is low, and comes out of reset upon release.                                                                                                                                              | I 3.3VSB | PU 10k<br>3.3VSB |                                         |
| CB_RESET#      | Reset output from module to Carrier Board. Active low. Issued by module chipset and may result from a low SYS_RESET# input, a low PWR_OK input, a VCC_12V power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the module software. | O 3.3V   |                  |                                         |
| PWR_OK         | Power OK from main power supply. A high value indicates that the power is good.                                                                                                                                                                                                   | I 3.3V   |                  | Set by resistor divider to accept 3.3V. |
| SUS_STAT#      | Indicates imminent suspend operation; used to notify LPC devices.                                                                                                                                                                                                                 | O 3.3VSB | PU 10k<br>3.3VSB |                                         |

Table 3-14. Power and System Management Signal Descriptions (Continued)

| SUS_S3#        | Indicates system is in Suspend to RAM state.<br>Active low output. Also known as "PS_ON" and can be used to control an ATX power supply.                                                        | O 3.3VSB      | PU 10k<br>3.3VSB |                  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|
| SUS_S4#        | Indicates system is in Suspend to Disk state. Active low output.                                                                                                                                | O 3.3VSB      | PU 10k<br>3.3VSB | Not<br>supported |
| SUS_S5#        | Indicates system is in Soft Off state.                                                                                                                                                          | O 3.3VSB      | PU 10k<br>3.3VSB |                  |
| WAKE0#         | PCI Express wake up signal.                                                                                                                                                                     | I 3.3VSB      | PU 10k<br>3.3VSB |                  |
| WAKE1#         | General purpose wake up signal. May be used to implement wake-up on PS/2 keyboard or mouse activity.                                                                                            | I 3.3VSB      | PU 10k<br>3.3VSB |                  |
| BATLOW#        | Battery low input. This signal may be driven<br>low by external circuitry to signal that the<br>system battery is low, or may be used to signal<br>some other external power-management event.  | I 3.3VSB      | PU 10k<br>3.3VSB |                  |
| THRM#          | Input from off-module temp sensor indicating an over-temp situation.                                                                                                                            | I 3.3V        | PU 10k<br>3.3V   |                  |
| THERMTRIP<br># | Active low output indicating that the CPU has entered thermal shutdown.                                                                                                                         | O 3.3V        | PU 10k<br>3.3V   |                  |
| SMB_CK         | System Management Bus bidirectional clock line. Power sourced through 5V standby rail and main power rails.                                                                                     | I/O<br>3.3VSB | PU 2k2<br>3.3VSB |                  |
| SMB_DAT#       | System Management Bus bidirectional data line. Power sourced through 5V standby rail and main power rails.                                                                                      | I/O<br>3.3VSB | PU 2k2<br>3.3VSB |                  |
| SMB_ALERT<br># | System Management Bus Alert – active low input can be used to generate an SMI# (System Management Interrupt) or to wake the system. Power sourced through 5V standby rail and main power rails. | I 3.3VSB      | PU 10k<br>3.3VSB |                  |
|                |                                                                                                                                                                                                 |               |                  |                  |

Table 3-15. Power and GND Signal Descriptions

| Signal     | Description                                                                                                                                                                                                                                          | I/O | PU/<br>PD | Comment |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---------|
| VCC_12V    | Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used.                                                                                                                                                     | P   |           |         |
| VCC_5V_SBY | Standby power input: +5.0V nominal. If VCC5_SBY is used, all available VCC_5V_SBY pins on the connector(s) shall be used. Only used for standby and suspend functions. May be left unconnected if these functions are not used in the system design. | P   |           |         |

Table 3-15. Power and GND Signal Descriptions

| VCC_RTC | Real-time clock circuit-power input. Nominally +3.0V.                               | P |  |
|---------|-------------------------------------------------------------------------------------|---|--|
| GND     | Ground - DC power and signal and AC signal return path.                             | P |  |
|         | All available GND connector pins shall be used and tied to Carrier Board GND plane. |   |  |

## **A-B Connector Pinout**

Table 3-16. Connector A-B Pinout

| Pin     | Row A          | Pin | Row B       | Pin | Row A       | Pin | Row B          |
|---------|----------------|-----|-------------|-----|-------------|-----|----------------|
| A1      | GND (FIXED)    | B1  | GND (FIXED) | A56 | PCIE_TX4-   | B56 | PCIE_RX4-      |
| A2      | GBE0_MDI3-     | B2  | GBE0_ACT#   | A57 | GND         | B57 | GPO2           |
| A3      | GBE0_MDI3+     | В3  | LPC_FRAME#  | A58 | PCIE_TX3+   | B58 | PCIE_RX3<br>+  |
| A4      | GBE0_LINK100#  | B4  | LPC_AD0     | A59 | PCIE_TX3-   | B59 | PCIE_RX3-      |
| A5      | GBE0_LINK1000# | В5  | LPC_AD1     | A60 | GND (FIXED) | B60 | GND<br>(FIXED) |
| A6      | GBE0_MDI2-     | В6  | LPC_AD2     | A61 | PCIE_TX2+   | B61 | PCIE_RX2<br>+  |
| A7      | GBE0_MDI2+     | В7  | LPC_AD3     | A62 | PCIE_TX2-   | B62 | PCIE_RX2-      |
| A8      | GBE0_LINK#     | В8  | LPC_DRQ0#   | A63 | GPI1 (*)    | B63 | GPO3           |
| A9      | GBE0_MDI1-     | В9  | LPC_DRQ1#   | A64 | PCIE_TX1+   | B64 | PCIE_RX1<br>+  |
| A1<br>0 | GBE0_MDI1+     | B10 | LPC_CLK     | A65 | PCIE_TX1-   | B65 | PCIE_RX1-      |
| A11     | GND (FIXED)    | B11 | GND (FIXED) | A66 | GND         | B66 | WAKE0#         |
| A1<br>2 | GBE0_MDI0-     | B12 | PWRBTN#     | A67 | GPI2        | B67 | WAKE1#         |
| A1<br>3 | GBE0_MDI0+     | B13 | SMB_CK      | A68 | PCIE_TX0+   | B68 | PCIE_RX0<br>+  |
| A1<br>4 | GBE0_CTREF     | B14 | SMB_DAT     | A69 | PCIE_TX0-   | B69 | PCIE_RX0-      |
| A1<br>5 | SUS_S3#        | B15 | SMB_ALERT#  | A70 | GND (FIXED) | B70 | GND<br>(FIXED) |
| A1<br>6 | SATA0_TX+      | B16 | SATA1_TX+   | A71 | LVDS_A0+    | B71 | LVDS_B0+       |
| A1<br>7 | SATA0_TX-      | B17 | SATA1_TX-   | A72 | LVDS_A0-    | B72 | LVDS_B0-       |
| A1<br>8 | SUS_S4# (*)    | B18 | SUS_STAT#   | A73 | LVDS_A1+    | B73 | LVDS_B1+       |
| A1<br>9 | SATA0_RX+      | B19 | SATA1_RX+   | A74 | LVDS_A1-    | B74 | LVDS_B1-       |

Table 3-16. Connector A-B Pinout (Continued)

| A2      | SATA0_RX-     | B20 | SATA1_RX-     | A75 | LVDS_A2+          | B75 | LVDS_B2+           |
|---------|---------------|-----|---------------|-----|-------------------|-----|--------------------|
| 0       | _             |     | _             |     | _                 |     | _                  |
| A2<br>1 | GND (FIXED)   | B21 | GND (FIXED)   | A76 | LVDS_A2-          | B76 | LVDS_B2-           |
| A2<br>2 | SATA2_TX+ (*) | B22 | SATA3_TX+ (*) | A77 | LVDS_VDD_<br>EN   | B77 | LVDS_B3+           |
| A2<br>3 | SATA2_TX- (*) | B23 | SATA3_TX- (*) | A78 | LVDS_A3+          | B78 | LVDS_B3-           |
| A2<br>4 | SUS_S5#       | B24 | PWR_OK        | A79 | LVDS_A3-          | B79 | LVDS_BKL<br>T_EN   |
| A2<br>5 | SATA2_RX+(*)  | B25 | SATA3_RX+ (*) | A80 | GND (FIXED)       | B80 | GND<br>(FIXED)     |
| A2<br>6 | SATA2_RX-(*)  | B26 | SATA3_RX- (*) | A81 | LVDS_A_CK+        | B81 | LVDS_B_C<br>K+     |
| A2<br>7 | BATLOW#       | B27 | WDT (*)       | A82 | LVDS_A_CK-        | B82 | LVDS_B_C<br>K-     |
| A2<br>8 | ATA_ACT#      | B28 | AC_SDIN2      | A83 | LVDS_I2C_C<br>K   | B83 | LVDS_BKL<br>T_CTRL |
| A2<br>9 | AC_SYNC       | B29 | AC_SDIN1 (    | A84 | LVDS_I2C_D<br>AT  | B84 | VCC_5V_S<br>BY     |
| A3<br>0 | AC_RST#       | B30 | AC_SDIN0      | A85 | GPI3              | B85 | VCC_5V_S<br>BY     |
| A3<br>1 | GND (FIXED)   | B31 | GND (FIXED)   | A86 | KBD_RST#          | B86 | VCC_5V_S<br>BY     |
| A3<br>2 | AC_BITCLK     | B32 | SPKR          | A87 | KBD_A20GA<br>TE   | B87 | VCC_5V_S<br>BY     |
| A3<br>3 | AC_SDOUT      | В33 | I2C_CK        | A88 | PCIE0_CK_R<br>EF+ | B88 | RSVD               |
| A3<br>4 | BIOS_DISABLE# | B34 | I2C_DAT       | A89 | PCIE0_CK_R<br>EF- | B89 | VGA_RED            |
| A3<br>5 | THRMTRIP#     | B35 | THRM#         | A90 | GND (FIXED)       | B90 | GND<br>(FIXED)     |
| A3<br>6 | USB6-         | B36 | USB7-         | A91 | RSVD              | B91 | VGA_GRN            |
| A3<br>7 | USB6+         | B37 | USB7+         | A92 | RSVD              | B92 | VGA_BLU            |
| A3<br>8 | USB_6_7_OC#   | B38 | USB_4_5_OC#   | A93 | GPO0              | B93 | VGA_HSY<br>NC      |
| A3<br>9 | USB4-         | B39 | USB5-         | A94 | RSVD              | B94 | VGA_VSY<br>NC      |
| A4<br>0 | USB4+         | B40 | USB5+         | A95 | RSVD              | B95 | VGA_I2C_<br>CK     |
| A4<br>1 | GND (FIXED)   | B41 | GND (FIXED)   | A96 | GND               | B96 | VGA_I2C_<br>DAT    |
| A4<br>2 | USB2-         | B42 | USB3-         | A97 | VCC_12V           | B97 | TV_DAC_<br>A       |

Table 3-16. Connector A-B Pinout (Continued)

| A4<br>3 | USB2+        | B43 | USB3+        | A98      | VCC_12V     | B98      | TV_DAC_<br>B   |
|---------|--------------|-----|--------------|----------|-------------|----------|----------------|
| A4<br>4 | USB_2_3_OC#  | B44 | USB_0_1_OC#  | A99      | VCC_12V     | B99      | TV_DAC_<br>C   |
| A4<br>5 | USB0-        | B45 | USB1-        | A10<br>0 | GND (FIXED) | B10<br>0 | GND<br>(FIXED) |
| A4<br>6 | USB0+        | B46 | USB1+        | A10<br>1 | VCC_12V     | B10<br>1 | VCC_12V        |
| A4<br>7 | VCC_RTC      | B47 | EXCD1_PERST# | A10<br>2 | VCC_12V     | B10<br>2 | VCC_12V        |
| A4<br>8 | EXCD0_PERST# | B48 | EXCD1_CPPE#  | A10<br>3 | VCC_12V     | B10<br>3 | VCC_12V        |
| A4<br>9 | EXCD0_CPPE#  | B49 | SYS_RESET#   | A10<br>4 | VCC_12V     | B10<br>4 | VCC_12V        |
| A5<br>0 | LPC_SERIRQ   | B50 | CB_RESET#    | A10<br>5 | VCC_12V     | B10<br>5 | VCC_12V        |
| A5<br>1 | GND (FIXED)  | B51 | GND (FIXED)  | A10<br>6 | VCC_12V     | B10<br>6 | VCC_12V        |
| A5<br>2 | PCIE_TX5+    | B52 | PCIE_RX5+    | A10<br>7 | VCC_12V     | B10<br>7 | VCC_12V        |
| A5<br>3 | PCIE_TX5-    | B53 | PCIE_RX5-    | A10<br>8 | VCC_12V     | B10<br>8 | VCC_12V        |
| A5<br>4 | GPI0         | B54 | GPO1         | A10<br>9 | VCC_12V     | B10<br>9 | VCC_12V        |
| A5<br>5 | PCIE_TX4+    | B55 | PCIE_RX4+    | A11<br>0 | GND (FIXED) | B11<br>0 | GND<br>(FIXED) |

NOTE The signals marked with an asterisk symbol (\*) are not supported on the *COM 830*. PCIE\_TX5± and PCIE\_RX5± are used for the onboard Gigabit Ethernet and therefore are not available.

# **C-D Connector Signal Descriptions**

Table 3-17. PCI Signal Descriptions

| Signal         | Description                                      | I/O         | PU/PD          | Comment |
|----------------|--------------------------------------------------|-------------|----------------|---------|
| PCI_AD[0:31]   | PCI bus multiplexed address and data lines       | I/O<br>3.3V |                |         |
| PCI_C/BE[0:3]# | PCI bus byte enable lines, active low            | I/O<br>3.3V |                |         |
| PCI_DEVSEL#    | PCI bus Device Select, active low                | I/O<br>3.3V | PU 8k2<br>3.3V |         |
| PCI_FRAME#     | PCI bus Frame control line, active low           | I/O<br>3.3V | PU 8k2<br>3.3V |         |
| PCI_IRDY#      | PCI bus Initiator Ready control line, active low | I/O<br>3.3V | PU 8k2<br>3.3V |         |

Table 3-17. PCI Signal Descriptions (Continued)

| PCI_TRDY#     | PCI bus Target Ready control line, active low                                                                                                                                                          | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------|
| PCI_STOP#     | PCI bus STOP control line, active low, driven by cycle initiator                                                                                                                                       | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
| PCI_PAR       | PCI bus parity                                                                                                                                                                                         | I/O<br>3.3V     |                  |                  |
| PCI_PERR#     | Parity Error: An external PCI device drives PERR# when it receives data that has a parity error.                                                                                                       | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
| PCI_REQ[0:3]# | PCI bus master request input lines, active low.                                                                                                                                                        | I 3.3V          | PU 8k2<br>3.3V   |                  |
| PCI_GNT[0:3]# | PCI bus master grant output lines, active low.                                                                                                                                                         | O 3.3V          |                  |                  |
| PCI_RESET#    | PCI Reset output, active low.                                                                                                                                                                          | O 3.3V          |                  |                  |
| PCI_LOCK#     | PCI Lock control line, active low.                                                                                                                                                                     | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
| PCI_SERR#     | System Error: SERR# may be pulsed active by any PCI device that detects a system error condition.                                                                                                      | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
| PCI_PME#      | PCI Power Management Event: PCI peripherals drive PME# to wake system from low-power states S1–S5.                                                                                                     | I<br>3.3VS<br>B | PU 10k<br>3.3VSB |                  |
| PCI_CLKRUN#   | Bidirectional pin used to support PCI clock run protocol for mobile systems.                                                                                                                           | I/O<br>3.3V     | PU 8k2<br>3.3V   |                  |
| PCI_IRQ[A:D]# | PCI interrupt request lines.                                                                                                                                                                           | I 3.3V          | PU 8k2<br>3.3V   |                  |
| PCI_CLK       | PCI 33MHz clock output.                                                                                                                                                                                | O 3.3V          |                  |                  |
| PCI_M66EN     | Module input signal indicates whether an off-module PCI device is capable of 66MHz operation. Pulled to GND by Carrier Board device or by Slot Card if the devices are NOT capable of 66MHz operation. | I               |                  | Not<br>connected |
|               | If the module is not capable of supporting 66MHz PCI operation, this input may be a no-connect on the module.                                                                                          |                 |                  |                  |
|               | If the module is capable of supporting 66MHz PCI operation, and if this input is held low by the Carrier Board, the module PCI interface shall operate at 33MHz.                                       |                 |                  |                  |

Table 3-18. IDE Signal Descriptions

| IDE         | Description                                                           | I/O         | PU/PD | Comment |
|-------------|-----------------------------------------------------------------------|-------------|-------|---------|
| IDE_D[0:15] | Bidirectional data to / from IDE device.                              | I/O<br>3.3V |       |         |
| IDE_A[0:2]  | Address lines to IDE device.                                          | O 3.3V      |       |         |
| IDE_IOW#    | I/O write line to IDE device. Data latched on trailing (rising) edge. | O 3.3V      |       |         |

Table 3-18. IDE Signal Descriptions (Continued)

| IDE_IOR#       | I/O read line to IDE device.                                                                                                                                                                                                                                            | O 3.3V |                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|
| IDE_REQ        | IDE Device DMA Request. It is asserted by the IDE device to request a data transfer.                                                                                                                                                                                    | I 3.3V |                |
| IDE_ACK#       | IDE Device DMA Acknowledge.                                                                                                                                                                                                                                             | O 3.3V |                |
| IDE_CS1#       | IDE Device Chip Select for 1F0h to 1FFh range.                                                                                                                                                                                                                          | O 3.3V |                |
| IDE_CS3#       | IDE Device Chip Select for 3F0h to 3FFh range.                                                                                                                                                                                                                          | O 3.3V |                |
| IDE_IORDY      | IDE device I/O ready input. Pulled low by the IDE device to extend the cycle.                                                                                                                                                                                           | I 3.3V | PU 4k7<br>3.3V |
| IDE_RESET<br># | Reset output to IDE device, active low.                                                                                                                                                                                                                                 | O 3.3V |                |
| IDE_IRQ        | Interrupt request from IDE device.                                                                                                                                                                                                                                      | I 3.3V | PU 8k2<br>3.3V |
| IDE_CBLID#     | Input from off-module hardware indicating the type of IDE cable being used. High indicates a 40-pin cable used for legacy IDE modes. Low indicates that an 80-pin cable with interleaved grounds is used. Such a cable is required for Ultra-DMA 66, 100 and 133 modes. | I 3.3V | PD 10k         |

Table 3-19. PCI Express Signal Descriptions (x16 Graphics)

| Signal                         | Description                                                                                                                      | I/O       | PU/PD          | Comment                   |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|---------------------------|
| PEG_RX[0-15]+<br>PEG_RX[0-15]- | PCI Express Graphics Receive Input differential pairs. Some of these lines are multiplexed with SDVO lines.                      | I PCIE    |                |                           |
|                                | Note: Can also be used as PCI Express Receive Input differential pairs 16 through 31 known as                                    |           |                |                           |
|                                | PCIE_RX[16-31] + and                                                                                                             |           |                |                           |
| PEG_TX[0-15]+<br>PEG_TX[0-15]- | PCI Express Graphics Transmit Output differential pairs. Some of these lines are multiplexed with SDVO lines.                    | O<br>PCIE |                |                           |
|                                | Note: Can also be used as PCI Express Transmit Output differential pairs 16 through 31 known as PCIE_TX[16-31] + and             |           |                |                           |
| PEG_LANE_RV                    | PCI Express Graphics lane reversal input strap.                                                                                  | I         |                | PEG_LANE                  |
| #                              | Pull low on the carrier board to reverse lane                                                                                    | 1.05V     |                | _RV# is a                 |
|                                | order. Be aware that the SDVO lines that share this interface do not necessarily reverse order if                                |           |                | boot strap<br>signal (see |
|                                | this strap is low.                                                                                                               |           |                | note below)               |
| PEG_ENABLE#                    | Strap to enable PCI Express x16 external graphics interface. Pull low to disable internal graphics and enable the x16 interface. | I 3.3V    | PU 10k<br>3.3V |                           |

**NOTE** Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module.

Table 3-20. SDVO Signal Descriptions

| Signal                           | Description                                                                                                          | I/O            | PU/PD | Comment                                                           |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|-------|-------------------------------------------------------------------|
| SDVOB_RED+<br>SDVOB_RED-         | Serial Digital Video B red output<br>differential pair Multiplexed with<br>PEG_TX[0]+ and PEG_TX[0]- pair            | O PCIE         |       |                                                                   |
| SDVOB_GRN+<br>SDVOB_GRN-         | Serial Digital Video B green output<br>differential pair Multiplexed with<br>PEG_TX[1]+ and PEG_TX[1]-               | O PCIE         |       |                                                                   |
| SDVOB_BLU+<br>SDVOB_BLU-         | Serial Digital Video B blue output differential pair Multiplexed with PEG_TX[2]+ and PEG_TX[2]-                      | O PCIE         |       |                                                                   |
| SDVOB_CK+<br>SDVOB_CK-           | Serial Digital Video B clock output differential pair. Multiplexed with PEG_TX[3]+ and PEG_TX[3]-                    | O PCIE         |       |                                                                   |
| SDVOB_INT+<br>SDVOB_INT-         | Serial Digital Video B interrupt input differential pair. Multiplexed with PEG_RX[1]+ and PEG_RX[1]-                 | I PCIE         |       |                                                                   |
| SDVOC_RED+<br>SDVOC_RED-         | Serial Digital Video C red output differential pair. Multiplexed with PEG_TX[4]+ and PEG_TX[4]-                      | O PCIE         |       |                                                                   |
| SDVOC_GRN+<br>SDVOC_GRN-         | Serial Digital Video C green output differential pair. Multiplexed with PEG_TX[5]+ and PEG_TX[5]-                    | O PCIE         |       |                                                                   |
| SDVOC_BLU+<br>SDVOC_BLU-         | Serial Digital Video C blue output differential pair. Multiplexed with PEG_TX[6]+ and PEG_TX[6]-                     | O PCIE         |       |                                                                   |
| SDVOC_CK+<br>SDVOC_CK-           | Serial Digital Video C clock output differential pair. Multiplexed with PEG_TX[7]+ and PEG_TX[7]-                    | O PCIE         |       |                                                                   |
| SDVOC_INT+<br>SDVOC_INT-         | Serial Digital Video C interrupt input differential pair. Multiplexed with PEG_RX[5]+ and PEG_RX[5]-                 | I PCIE         |       |                                                                   |
| SDVO_TVCLKIN+<br>SDVO_TVCLKIN-   | Serial Digital Video TVOUT synchronization clock input differential pair. Multiplexed with PEG_RX[0]+ and PEG_RX[0]- | I PCIE         |       |                                                                   |
| SDVO_FLDSTALL+<br>SDVO_FLDSTALL- | Serial Digital Video Field Stall input differential pair. Multiplexed with PEG_RX[2]+ and PEG_RX[2]-                 | I PCIE         |       |                                                                   |
| SDVO_I2C_CK<br>(SDVO_CLK)        | SDVO I <sup>2</sup> C clock line to set up SDVO peripherals.                                                         | O 2.5V         |       |                                                                   |
| SDVO_I2C_DAT<br>(SDVO_DATA)      | SDVO I <sup>2</sup> C data line to set up SDVO peripherals.                                                          | I/O OD<br>2.5V |       | SDVO_I2C_<br>DAT is a<br>boot strap<br>signal (see<br>note below) |

**NOTE** Some signals have special functionality during the reset process. They may bootstrap some basic important functions of the module.

Table 3-21. Module Type Definition Signal Description

| Signal      | Description                | n                         | I/O                          | Comment                                                                                                                                     |     |                                                                                                                     |
|-------------|----------------------------|---------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|
| TYPE[ 0:2]# | implemente<br>either groun | ed on the mod             | lule. The pins are no-connec | Board the Pin-out Type that is are tied on the module to ets (NC). For Pinout Type 1,  Pinout Type 1  Pinout Type 2  Pinout Type 3 (no IDE) | PDS | TYPE[0:2]# signals are available on all modules following the Type 2-5 Pinout standard. The COM 830 is based on the |
|             | monitors th<br>deactivates | e module TY<br>the ATX_ON | PE pins and k                | combinatorial logic that<br>teeps power off (e.g<br>ATX power supply) if an<br>etected.                                                     |     | COM Express Type 2 pinout therefore these pins are not connected.                                                   |

Table 3-22. Power and GND Signal Descriptions

| Signal  | Description                                                                                      | I/O | PU/PD | Comment |
|---------|--------------------------------------------------------------------------------------------------|-----|-------|---------|
| VCC_12V | Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used. | P   |       |         |
| GND     | Ground - DC power and signal and AC signal return path.                                          | P   |       |         |
|         | All available GND connector pins shall be used and tied to carrier board GND plane.              |     |       |         |

## **C-D Connector Pinout**

Table 3-23. Connector C-D Pinout

| Pin | Row C       | Pin | Row D       | Pin | Row C       | Pin | Row D          |
|-----|-------------|-----|-------------|-----|-------------|-----|----------------|
| C1  | GND (FIXED) | D1  | GND (FIXED) | C56 | PEG_RX1-    | D56 | PEG_TX1-       |
| C2  | IDE_D7      | D2  | IDE_D5      | C57 | TYPE1#      | D57 | TYPE2#         |
| C3  | IDE_D6      | D3  | IDE_D10     | C58 | PEG_RX2+    | D58 | PEG_TX2+       |
| C4  | IDE_D3      | D4  | IDE_D11     | C59 | PEG_RX2-    | D59 | PEG_TX2-       |
| C5  | IDE_D15     | D5  | IDE_D12     | C60 | GND (FIXED) | D60 | GND<br>(FIXED) |
| C6  | IDE_D8      | D6  | IDE_D4      | C61 | PEG_RX3+    | D61 | PEG_TX3+       |
| C7  | IDE_D9      | D7  | IDE_D0      | C62 | PEG_RX3-    | D62 | PEG_TX3-       |
| C8  | IDE_D2      | D8  | IDE_REQ     | C63 | RSVD        | D63 | RSVD           |
| C9  | IDE_D13     | D9  | IDE_IOW#    | C64 | RSVD        | D64 | RSVD           |
| C10 | IDE_D1      | D10 | IDE_ACK#    | C65 | PEG_RX4+    | D65 | PEG_TX4+       |
| C11 | GND (FIXED) | D11 | GND (FIXED) | C66 | PEG_RX4-    | D66 | PEG_TX4-       |
| C12 | IDE_D14     | D12 | IDE_IRQ     | C67 | RSVD        | D67 | GND            |
| C13 | IDE_IORDY   | D13 | IDE_A0      | C68 | PEG_RX5+    | D68 | PEG_TX5+       |
| C14 | IDE_IOR#    | D14 | IDE_A1      | C69 | PEG_RX5-    | D69 | PEG_TX5-       |
| C15 | PCI_PME#    | D15 | IDE_A2      | C70 | GND (FIXED) | D70 | GND<br>(FIXED) |
| C16 | PCI_GNT2#   | D16 | IDE_CS1#    | C71 | PEG_RX6+    | D71 | PEG_TX6+       |
| C17 | PCI_REQ2#   | D17 | IDE_CS3#    | C72 | PEG_RX6-    | D72 | PEG_TX6-       |
| C18 | PCI_GNT1#   | D18 | IDE_RESET#  | C73 | SDVO_DATA   | D73 | SVDO_CLK       |
| C19 | PCI_REQ1#   | D19 | PCI_GNT3#   | C74 | PEG_RX7+    | D74 | PEG_TX7+       |
| C20 | PCI_GNT0#   | D20 | PCI_REQ3#   | C75 | PEG_RX7-    | D75 | PEG_TX7-       |
| C21 | GND (FIXED) | D21 | GND (FIXED) | C76 | GND         | D76 | GND            |
| C22 | PCI_REQ0#   | D22 | PCI_AD1     | C77 | RSVD        | D77 | IDE_CBLID#     |
| C23 | PCI_RESET#  | D23 | PCI_AD3     | C78 | PEG_RX8+    | D78 | PEG_TX8+       |
| C24 | PCI_AD0     | D24 | PCI_AD5     | C79 | PEG_RX8-    | D79 | PEG_TX8-       |
| C25 | PCI_AD2     | D25 | PCI_AD7     | C80 | GND (FIXED) | D80 | GND<br>(FIXED) |
| C26 | PCI_AD4     | D26 | PCI_C/BE0#  | C81 | PEG_RX9+    | D81 | PEG_TX9+       |
| C27 | PCI_AD6     | D27 | PCI_AD9     | C82 | PEG_RX9-    | D82 | PEG_TX9-       |
| C28 | PCI_AD8     | D28 | PCI_AD11    | C83 | RSVD        | D83 | RSVD           |
| C29 | PCI_AD10    | D29 | PCI_AD13    | C84 | GND         | D84 | GND            |
| C30 | PCI_AD12    | D30 | PCI_AD15    | C85 | PEG_RX10+   | D85 | PEG_TX10+      |
| C31 | GND (FIXED) | D31 | GND (FIXED) | C86 | PEG_RX10-   | D86 | PEG_TX10-      |
| C32 | PCI_AD14    | D32 | PCI_PAR     | C87 | GND         | D87 | GND            |
| C33 | PCI_C/BE1#  | D33 | PCI_SERR#   | C88 | PEG_RX11+   | D88 | PEG_TX11+      |
| C34 | PCI_PERR#   | D34 | PCI_STOP#   | C89 | PEG_RX11-   | D89 | PEG_TX11-      |
| C35 | PCI_LOCK#   | D35 | PCI_TRDY#   | C90 | GND (FIXED) | D90 | GND<br>(FIXED) |

Table 3-23. Connector C-D Pinout (Continued)

| C36 | PCI_DEVSEL# | D36 | PCI_FRAME#       | C91      | PEG_RX12+   | D91      | PEG_TX12+       |
|-----|-------------|-----|------------------|----------|-------------|----------|-----------------|
| C37 | PCI_IRDY#   | D37 | PCI_AD16         | C92      | PEG_RX12-   | D92      | PEG_TX12-       |
| C38 | PCI_C/BE2#  | D38 | PCI_AD18         | C93      | GND         | D93      | GND             |
| C39 | PCI_AD17    | D39 | PCI_AD20         | C94      | PEG_RX13+   | D94      | PEG_TX13+       |
| C40 | PCI_AD19    | D40 | PCI_AD22         | C95      | PEG_RX13-   | D95      | PEG_TX13-       |
| C41 | GND (FIXED) | D41 | GND (FIXED)      | C96      | GND         | D96      | GND             |
| C42 | PCI_AD21    | D42 | PCI_AD24         | C97      | RSVD        | D97      | PEG_ENABL<br>E# |
| C43 | PCI_AD23    | D43 | PCI_AD26         | C98      | PEG_RX14+   | D98      | PEG_TX14+       |
| C44 | PCI_C/BE3#  | D44 | PCI_AD28         | C99      | PEG_RX14-   | D99      | PEG_TX14-       |
| C45 | PCI_AD25    | D45 | PCI_AD30         | C10<br>0 | GND (FIXED) | D10<br>0 | GND<br>(FIXED)  |
| C46 | PCI_AD27    | D46 | PCI_IRQC#        | C10<br>1 | PEG_RX15+   | D10<br>1 | PEG_TX15+       |
| C47 | PCI_AD29    | D47 | PCI_IRQD#        | C10<br>2 | PEG_RX15-   | D10<br>2 | PEG_TX15-       |
| C48 | PCI_AD31    | D48 | PCI_CLKRUN<br>#  | C10<br>3 | GND         | D10<br>3 | GND             |
| C49 | PCI_IRQA#   | D49 | PCI_M66EN<br>(*) | C10<br>4 | VCC_12V     | D10<br>4 | VCC_12V         |
| C50 | PCI_IRQB#   | D50 | PCI_CLK          | C10<br>5 | VCC_12V     | D10<br>5 | VCC_12V         |
| C51 | GND (FIXED) | D51 | GND (FIXED)      | C10<br>6 | VCC_12V     | D10<br>6 | VCC_12V         |
| C52 | PEG_RX0+    | D52 | PEG_TX0+         | C10<br>7 | VCC_12V     | D10<br>7 | VCC_12V         |
| C53 | PEG_RX0-    | D53 | PEG_TX0-         | C10<br>8 | VCC_12V     | D10<br>8 | VCC_12V         |
| C54 | TYPE0#      | D54 | PEG_LANE_R<br>V# | C10<br>9 | VCC_12V     | D10<br>9 | VCC_12V         |
| C55 | PEG_RX1+    | D55 | PEG_TX1+         | C110     | GND (FIXED) | D11<br>0 | GND<br>(FIXED)  |
| •   |             |     |                  |          |             |          |                 |

**NOTE** The signals marked with an asterisk symbol (\*) are not supported on the COM 830.

# **Boot Strap Signals**

Table 3-24. Boot Strap Signal Descriptions

| Signal                      | Description of Boot Strap Signal                                                                                                                                                                                   | I/O            | PU/PD | Comment                                                                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-----------------------------------------------------------------------------------|
| AC_SYNC                     | AC '97/Intel® High Definition<br>Audio Sync: This signal is a 48 kHz<br>fixed rate sample sync to the<br>codec(s). It is also used to encode<br>the stream number.                                                 | O 3.3V         |       | AC_SYNC is<br>a boot strap<br>signal (see<br>caution<br>statement<br>below)       |
| AC_SDOUT                    | AC '97/Intel High Definition Audio Serial Data Out: This signal is the serial TDM data output to the codec(s). This serial output is double-pumped for a bit rate of 48 Mb/s for Intel High Definition Audio.      | O 3.3V         |       | AC_SDOUT is a boot strap signal (see caution statement below)                     |
| ATA_ACT#                    | ATA (parallel and serial) or SAS activity indicator, active low.                                                                                                                                                   | OC 3.3V        |       | ATA_ACT# is<br>a boot strap<br>signal (see<br>caution<br>statement<br>below)      |
| SPKR                        | Output for audio enunciator, the "speaker" in PC-AT systems                                                                                                                                                        | O 3.3V         |       | SPEAKER is<br>a boot strap<br>signal (see<br>caution<br>statement<br>below)       |
| PEG_LANE_RV#                | PCI Express Graphics lane reversal input strap. Pull low on the carrier board to reverse lane order. Be aware that the SDVO lines that share this interface do not necessarily reverse order if this strap is low. | I 1.05V        |       | PEG_LANE_<br>RV# is a boot<br>strap signal<br>(see caution<br>statement<br>below) |
| SDVO_I2C_DAT<br>(SDVO_DATA) | SDVO I <sup>2</sup> C data line to set up SDVO peripherals.                                                                                                                                                        | I/O OD<br>2.5V |       | SDVO_I2C_D<br>AT is a boot<br>strap signal<br>(see caution<br>statement<br>below) |

#### **CAUTION**

The signals listed in the table above are used as chipset configuration straps during system reset. In this condition (during reset), they are inputs that are pulled to the correct state by either COM Express internally implemented resistors or chipset internally implemented resistors that are located on the module. No external DC loads or external pull-up or pull-down resistors should change the configuration of the signals listed in the above table with the exception of AC\_SYNC and AC\_SDOUT. External resistors may override the internal strap states and cause the COM Express module to malfunction and/or cause irreparable damage to the module.

AC\_SYNC and AC\_SDOUT can be used to switch PCI Express channels 1-4 between x1 and x4 mode. If both signals are each pulled-up (using 1K resistors) to 3.3V at the rising edge of PWROK then x4 mode is enabled. x1 mode is used by default if these resistors are not populated.

## **System Resources**

### **System Memory Map**

Table 3-25. Memory Map

| Address Range (decimal)           | Address Range (hex) | Size     | Description                       |
|-----------------------------------|---------------------|----------|-----------------------------------|
| (TOM-192kB) – TOM                 | N.A.                | 192kB    | ACPI reclaim, MPS and NVS area ** |
| (TOM-8MB-192kB) – (TOM-<br>192kB) | N.A.                | 1 or 8MB | VGA frame buffer *                |
| 1024kB – (TOM-8MB-192kB)          | 100000 - N.A        | N.A.     | Extended memory                   |
| 869kB – 1024kB                    | E0000 - FFFFF       | 128kB    | Runtime BIOS                      |
| 832kB – 869kB                     | D0000 - DFFFF       | 64kB     | Upper memory                      |
| 640kB – 832kB                     | A0000 - CFFFF       | 192kB    | Video memory and BIOS             |
| 639kB – 640kB                     | 9FC00 - 9FFFF       | 1kB      | Extended BIOS data                |
| 0 – 639kB                         | 00000 - 9FC00       | 512kB    | Conventional memory               |

**NOTE** 

T.O.M. = Top of memory = max. DRAM installed

- \* VGA frame buffer can be reduced to 1MB in setup.
- \*\* Only if ACPI Aware OS is set to YES in setup

### I/O Address Assignment

The I/O address assignment of the COM 830 module is functionally identical with a standard PC/AT. The most important addresses and the ones that differ from the standard PC/AT configuration are listed in the table below.

Table 3-26. I/O Address Assignment

| I/O Address (hex) | Size      | Available | Description                        |
|-------------------|-----------|-----------|------------------------------------|
| 0000 - 00FF       | 256 bytes | No        | Motherboard resources              |
| 0100 - 010F       | 16 bytes  | No        | Ampro System Control               |
| 0170 - 0177       | 8 bytes   | No        | Secondary IDE channel              |
| 01F0 - 01F7       | 8 bytes   | No        | Primary IDE channels               |
| 0376              | 1 byte    | No        | Secondary IDE channel command port |
| 0377              | 1 byte    | No        | Secondary IDE channel status port  |
| 03B0 – 03DF       | 16 bytes  | No        | Video system                       |
| 03F6              | 1 byte    | No        | Primary IDE channel command port   |
| 03F7              | 1 byte    | No        | Primary IDE channel status port    |
| 0480 – 04BF       | 64 bytes  | No        | Motherboard resources              |
| 04D0 - 04D1       | 2 bytes   | No        | Motherboard resources              |
| 0800 – 087F       | 128 bytes | No        | Motherboard resources              |
| 0CF8 - 0CFB       | 4 bytes   | No        | PCI configuration address register |
| 0CFC - 0CFF       | 4 bytes   | No        | PCI configuration data register    |
| 0D00 – FFFF       |           | See note  | PCI / PCI Express bus              |

NOTE

The BIOS assigns PCI and PCI Express I/O resources from FFF0h downwards. Non PnP/PCI/PCI Express compliant devices must not consume I/O resources in that area.

#### **LPC Bus**

On the COM 830 the PCI Bus acts as the subtractive decoding agent. All I/O cycles that are not positively decoded are forwarded to the PCI Bus not the LPC Bus. Only specified I/O ranges are forwarded to the LPC Bus. In the BIOS the following I/O address ranges are sent to the LPC Bus:

280 - 2FF

3F8 - 3FF

3E8 - 3EF

A00 - A0F

Parts of these ranges are not available if a Super I/O is used on the carrier board. If a Super I/O is not implemented on the carrier board then these ranges are available for customer use. If you require additional LPC Bus resources other than those mentioned above, or more information about this subject, contact Ampro technical support for assistance.

# Interrupt Request (IRQ) Lines

Table 3-27. IRQ Lines in PIC mode

| IRQ# | Available | <b>Typical Interrupt Source</b>   | Connected to Pin                 |
|------|-----------|-----------------------------------|----------------------------------|
| 0    | No        | Counter 0                         | Not applicable                   |
| 1    | No        | Keyboard                          | Not applicable                   |
| 2    | No        | Cascade Interrupt from Slave PIC  | Not applicable                   |
| 3    | Yes       |                                   | IRQ3 via SERIRQ or PCI BUS INTx  |
| 4    | Yes       |                                   | IRQ4 via SERIRQ or PCI BUS INTx  |
| 5    | Yes       |                                   | IRQ5 via SERIRQ or PCI BUS INTx  |
| 6    | Yes       |                                   | IRQ6 via SERIRQ or PCI BUS INTx  |
| 7    | Yes       |                                   | IRQ7 via SERIRQ or PCI BUS INTx  |
| 8    | No        | Real-time Clock                   | Not applicable                   |
| 9    | Note 2    | SCI / Generic                     | IRQ9 via SERIRQ or PCI BUS INTx  |
| 10   | Yes       |                                   | IRQ10 via SERIRQ or PCI BUS INTx |
| 11   | Yes       |                                   | IRQ11 via SERIRQ or PCI BUS INTx |
| 12   | Yes       |                                   | IRQ12 via SERIRQ or PCI BUS INTx |
| 13   | No        | Math processor                    | Not applicable                   |
| 14   | Note 1    | IDE Controller 0 (IDE0) / Generic | IRQ14 or PCI BUS INTx            |
| 15   | Note 1    | IDE Controller 1 (IDE1) / Generic | IRQ15 or PCI BUS INTx            |

In PIC mode, the PCI bus interrupt lines can be routed to any free IRQ.

#### **NOTE**

If the ATA/IDE configuration is set to enhanced mode in BIOS setup (serial ATA and parallel ATA native mode operation), IRQ14 and 15 are free for PCI/LPC bus.

In ACPI mode, IRQ9 is used for the SCI (System Control Interrupt). The SCI can be shared with a PCI interrupt line.

Table 3-28. IRQ Lines in APIC mode

| IRQ# | Available | <b>Typical Interrupt Source</b>  | Connected to Pin / Function |
|------|-----------|----------------------------------|-----------------------------|
| 0    | No        | Counter 0                        | Not applicable              |
| 1    | No        | Keyboard                         | Not applicable              |
| 2    | No        | Cascade Interrupt from Slave PIC | Not applicable              |
| 3    | Yes       |                                  | IRQ3 via SERIRQ             |
| 4    | Yes       |                                  | IRQ4 via SERIRQ             |
| 5    | Yes       |                                  | IRQ5 via SERIRQ             |
| 6    | Yes       |                                  | IRQ6 via SERIRQ             |
| 7    | Yes       |                                  | IRQ7 via SERIRQ             |
| 8    | No        | Real-time Clock                  | Not applicable              |

Table 3-28. IRQ Lines in APIC mode (Continued)

| 9  | Note 2 | Generic                              | IRQ9 via SERIRQ, option for SCI                                                                                                             |
|----|--------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Yes    |                                      | IRQ10 via SERIRQ                                                                                                                            |
| 11 | Yes    |                                      | IRQ11 via SERIRQ                                                                                                                            |
| 12 | Yes    |                                      | IRQ12 via SERIRQ                                                                                                                            |
| 13 | No     | Math processor                       | Not applicable                                                                                                                              |
| 14 | Note 1 | IDE Controller 0 (IDE0) /<br>Generic | IRQ14                                                                                                                                       |
| 15 | Note 1 | IDE Controller 1 (IDE1) /<br>Generic | IRQ15                                                                                                                                       |
| 16 | No     |                                      | PIRQA, Integrated VGA Controller, PCI<br>Express Root Port 1, Intel High<br>Definition Audio Controller (Azalia),<br>UHCI Host Controller 3 |
| 17 | No     |                                      | PIRQB, AC'97 Audio, PCI Express Root<br>Port 2, PCI Express Root Port 6, onboard<br>Gigabit LAN Controller                                  |
| 18 | No     |                                      | PIRQC, Parallel ATA Controller in<br>enhanced/native mode, UHCI Host<br>Controller 2, PCI Express Root Port 3                               |
| 19 | No     |                                      | PIRQD, Serial ATA controller in<br>enhanced/native mode, UHCI Host<br>Controller 1, SMBus Controller, PCI<br>Express Root Port 4            |
| 20 | Yes    |                                      | PIRQE, PCI Bus INTD, option for SCI                                                                                                         |
| 21 | Yes    |                                      | PIRQF, PCI Bus INTA                                                                                                                         |
| 22 | Yes    |                                      | PIRQG, PCI Bus INTB                                                                                                                         |
| 23 | Yes    |                                      | PIRQH, PCI Bus INTC, UHCI Host<br>Controller 0, EHCI Host Controller                                                                        |

In APIC mode, the PCI bus interrupt lines are connected with IRQ 20, 21, 22 and 23.

**NOTE** If the ATA/IDE configuration is set to enhanced mode in BIOS setup (serial ATA and parallel ATA native mode operation), IRQ14 and 15 are free for PCI/LPC bus.

In ACPI mode, IRQ9 is used for the SCI (System Control Interrupt). The SCI can be shared with a PCI interrupt line.

# **PCI Configuration Space Map**

Table 3-29. PCI Configuration Space Map

| Bus Number (hex) | Device Number (hex) | Function Number (hex) | PCI Interrupt<br>Routing | Description                       |
|------------------|---------------------|-----------------------|--------------------------|-----------------------------------|
| 00h              | 00h                 | 00h                   | N.A.                     | Host Bridge                       |
| 00h              | 01h                 | 00h                   | Internal                 | PCI Express Graphics<br>Root Port |
| 00h              | 02h                 | 00h                   | Internal                 | VGA Graphics                      |

Table 3-29. PCI Configuration Space Map (Continued)

| 00h               | 02h | 01h | N.A.     | VGA Graphics                                                                                                                                          |
|-------------------|-----|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h               | 1Bh | 00h | Internal | Intel High Definition<br>Audio Controller<br>(Azalia)                                                                                                 |
| 00h (see<br>Note) | 1Ch | 00h | Internal | PCI Express Root Port<br>0                                                                                                                            |
| 00h (see<br>Note) | 1Ch | 01h | Internal | PCI Express Root Port                                                                                                                                 |
| 00h (see<br>Note) | 1Ch | 02h | Internal | PCI Express Root Port                                                                                                                                 |
| 00h (see<br>Note) | 1Ch | 03h | Internal | PCI Express Root Port 3                                                                                                                               |
| 00h (see<br>Note) | 1Ch | 04h | Internal | PCI Express Root Port                                                                                                                                 |
| 00h (see<br>Note) | 1Ch | 05h | Internal | PCI Express Root Port<br>5                                                                                                                            |
| 00h               | 1Dh | 00h | Internal | UHCI Host Controller                                                                                                                                  |
| 00h               | 1Dh | 01h | Internal | UHCI Host Controller                                                                                                                                  |
| 00h               | 1Dh | 02h | Internal | UHCI Host Controller<br>2                                                                                                                             |
| 00h               | 1Dh | 03h | Internal | UHCI Host Controller 3                                                                                                                                |
| 00h               | 1Dh | 07h | Internal | EHCI Host Controller                                                                                                                                  |
| 00h               | 1Eh | 00h | Internal | PCI to PCI Bridge                                                                                                                                     |
| 00h               | 1Eh | 02h | Internal | AC97 Audio<br>Controller                                                                                                                              |
| 00h               | 1Fh | 00h | N.A.     | PCI to LPC Bridge                                                                                                                                     |
| 00h               | 1Fh | 01h | Internal | Parallel ATA<br>Controller in enhanced<br>mode                                                                                                        |
| 00h               | 1Fh | 02h | Internal | Serial ATA Controller<br>in enhanced or RAID<br>mode / Parallel ATA<br>and non-RAID Serial<br>ATA as combined IDE<br>Controller in<br>compatible mode |
| 00h               | 1Fh | 03h | Internal | SMBus Host<br>Controller                                                                                                                              |
| 01h (see<br>Note) | 00h | xxh | Internal | PCI Express Port 0                                                                                                                                    |
| 02h (see<br>Note) | 00h | xxh | Internal | PCI Express Port 1                                                                                                                                    |
| 03h (see<br>Note) | 00h | xxh | Internal | PCI Express Port 2                                                                                                                                    |

Table 3-29. PCI Configuration Space Map (Continued)

| 04h (see<br>Note) | 00h | xxh | Internal  | PCI Express Port 3                |
|-------------------|-----|-----|-----------|-----------------------------------|
| 05h (see<br>Note) | 00h | Xxh | Internal  | PCI Express Port 4                |
| 06h (see<br>Note) | 00h | 00h | Internal  | Onboard Gigabit LAN<br>Controller |
| 07h (see<br>Note) | 04h | xxh | INTA-INTD | PCI Bus Slot 1                    |
| 07h (see<br>Note) | 05h | xxh | INTA-INTD | PCI Bus Slot 2                    |
| 07h (see<br>Note) | 06h | xxh | INTA-INTD | PCI Bus Slot 3                    |
| 07h (see<br>Note) | 07h | xxh | INTA-INTD | PCI Bus Slot 4                    |

#### NOTE

The given bus numbers only apply if all PCI Express Ports are enabled in the BIOS setup. If for example PCI Express Port 2 is disabled then PCI Express Port 3 will be assigned bus number 3 instead of bus number 4, Port 4 will be assigned bus number 4 and the standard PCI slots will be assigned bus number 6. Furthermore, the respective PCI Express Root Port is hidden if the corresponding PCI Express Port is disabled.

## **PCI Interrupt Routing Map**

Table 3-30. PCI Interrupt Routing Map

| PIRQ | PCI<br>BUS<br>INT<br>Line <sup>1</sup> | APIC<br>Mode<br>IRQ | VGA | Azalia<br>HDA | UHC<br>I 0 | UCH<br>I 1 | UCH<br>I 2 | UHCI<br>3 | EH<br>CI | PATA<br>Native | SM<br>Bus | A<br>C<br>9<br>7 |
|------|----------------------------------------|---------------------|-----|---------------|------------|------------|------------|-----------|----------|----------------|-----------|------------------|
| A    |                                        | 16                  | X   | X             |            |            |            | X         |          |                |           |                  |
| В    |                                        | 17                  |     |               |            |            |            |           |          |                |           | X                |
| С    |                                        | 18                  |     |               |            |            | X          |           |          | X              |           |                  |
| D    |                                        | 19                  |     |               |            | X          |            |           |          |                | X         |                  |
| Е    | INTD                                   | 20                  |     |               |            |            |            |           |          |                |           |                  |
| F    | INTA                                   | 21                  |     |               |            |            |            |           |          |                |           |                  |
| G    | INTB                                   | 22                  |     |               |            |            |            |           |          |                |           |                  |
| Н    | INTC                                   | 23                  |     |               | X          |            |            |           | X        |                |           |                  |

| PIRQ | Tabl <b>a</b> -<br>LAN | SATA<br>Native | PCI-<br>EX<br>Root<br>Port<br>0 | PCI-<br>EX<br>Root<br>Port | PCI-<br>EX<br>Root<br>Port<br>2 | PCI-<br>EX<br>Root<br>Port<br>3 | PCI-<br>EX<br>Root<br>Port<br>4 | PCI-<br>EX<br>Root<br>Port<br>5 | PCI<br>-EX<br>Port<br>0 | PCI<br>-EX<br>Por<br>t 1 | PCI<br>-EX<br>Port<br>2 | PCI<br>-EX<br>Por<br>t 3 | PCI<br>-EX<br>Por<br>t 4 |
|------|------------------------|----------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------------------|
| A    |                        |                | X                               |                            |                                 |                                 | X                               |                                 | X 2                     | x 5                      | x 4                     | x <sup>3</sup>           | X 2                      |
| В    | X                      |                |                                 | X                          |                                 |                                 |                                 | X                               | X 3                     | x 2                      | x 5                     | x 4                      | X 3                      |
| С    |                        |                |                                 |                            | X                               |                                 |                                 |                                 | x 4                     | x 3                      | X 2                     | x 5                      | x 4                      |
| D    |                        | X              |                                 |                            |                                 | X                               |                                 |                                 | x 5                     | x 4                      | x 3                     | x 2                      | x 5                      |
| Е    |                        |                |                                 |                            |                                 |                                 |                                 |                                 |                         |                          |                         |                          |                          |
| F    |                        |                |                                 |                            |                                 |                                 |                                 |                                 |                         |                          |                         |                          |                          |
| G    |                        |                |                                 |                            |                                 |                                 |                                 |                                 |                         |                          |                         |                          |                          |
| Н    |                        |                |                                 |                            |                                 |                                 |                                 |                                 |                         |                          |                         |                          |                          |

Table 3-31. PCI Interrupt Routing Map (continued)

#### NOTE

- <sup>1</sup> These interrupts are available for external devices/slots on the X1 connector.
- <sup>2</sup> Interrupt used by single function PCI Express devices (INTA).
- <sup>3</sup> Interrupt used by multifunction PCI Express devices (INTB).
- <sup>4</sup> Interrupt used by multifunction PCI Express devices (INTC).

### **PCI Bus Masters**

The COM 830 supports 4 external PCI Bus Masters. There are no limitations in connecting bus master PCI devices.

| NOTE | If there are two devices connected to the same PCI REQ/GNT pair and they are |
|------|------------------------------------------------------------------------------|
|      | transferring data at the same time then the latency time of these shared PCI |
|      | devices can not be guaranteed.                                               |

### I<sup>2</sup>C Bus

There are no onboard resources connected to the I<sup>2</sup>C bus. Address 16h is reserved for Battery Management solutions.

### **SM Bus**

System Management (SM) bus signals are connected to the Intel® I/O Controller Hub 82801GHM (ICH7M-DH) and the SM bus is not intended to be used by off-board non-system management devices. For more information about this subject please contact Ampro technical support.

<sup>&</sup>lt;sup>5</sup> Interrupt used by multifunction PCI Express devices (INTD).

The following section describes the BIOS setup program. The BIOS setup program can be used to view and change the BIOS settings for the module. Only experienced users should change the default BIOS settings.

### **Entering the BIOS Setup Program.**

The BIOS setup program can be accessed by pressing the <DEL> key during POST.

### **Boot Selection Popup**

The BIOS offers the possibility to access a Boot Selection Popup menu by pressing the <F11> key during POST. If this option is used, a message will be displayed during POST stating that the "Boot Selection Popup menu has been selected" and the menu itself will be displayed immediately after POST thereby allowing the operator to choose the boot device to be used.

### Manufacturer Default Settings

Pressing the <End> key repeatedly, immediately after power is initiated will result in the manufacturer default settings being loaded for that boot sequence and only that boot sequence. This is helpful when a previous BIOS setting is no longer desired. If you want to change the BIOS settings, or save the manufacturer default settings, then you must enter the BIOS setup program and use the 'Save and Exit' function. This feature is enabled by default.

## **Setup Menu and Navigation**

The BIOS setup screen is composed of the menu bar and two main frames. The menu bar is shown below:

| NOTE | Entries in the option column that are displayed in bold print indicate BIOS default |
|------|-------------------------------------------------------------------------------------|
|      | values.                                                                             |

| n Advanced Boot | Security | Power | Exit |
|-----------------|----------|-------|------|
|-----------------|----------|-------|------|

The left frame displays all the options that can be configured in the selected menu. Grayed-out options cannot be configured. Only the blue options can be configured. When an option is selected, it is highlighted in white.

The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

The setup program uses a key-based navigation system. Most of the keys can be used at any time while in setup. The table below explains the supported keys:

| Key            | Description                                        |
|----------------|----------------------------------------------------|
| Left/Right     | Select a setup menu (e.g. Main, Boot, Exit).       |
| Up/Down        | Select a setup item or sub menu.                   |
| + - Plus/Minus | Change the field value of a particular setup item. |

| Tab   | Select setup fields (e.g. in date and time).                 |
|-------|--------------------------------------------------------------|
| F1    | Display General Help screen.                                 |
| F2/F3 | Change Colors of setup screen.                               |
| F7    | Discard Changes.                                             |
| F9    | Load optimal default settings.                               |
| F10   | Save changes and exit setup.                                 |
| ESC   | Discard changes and exit setup.                              |
| ENTER | Display options of a particular setup item or enter submenu. |

# **Main Setup Screen**

When you first enter the BIOS setup, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab.

The Main screen reports BIOS, processor, memory and board information and is for configuring the system date and time.

| Feature          | Options                     | Description                                                                     |
|------------------|-----------------------------|---------------------------------------------------------------------------------|
| System Time      | Hour:Minute:Second          | Specifies the current system time.  Note: The time is in 24-hour format.        |
| System Date      | Day of week, month/day/year | Specifies the current system date.  Note: The date is in month-day-year format. |
| BIOS ID          | no option                   | Displays the BIOS ID.                                                           |
| Processor        | no option                   | Displays the processor type.                                                    |
| System Memory    | no option                   | Displays the total amount of system memory.                                     |
| Product Revision | no option                   | Displays the hardware revision of the board                                     |
| Serial Number    | no option                   | Displays the serial number of the board.                                        |
| BC Firmware Rev. | no option                   | Displays the revision of the board controller.                                  |
| MAC Address      | no option                   | Displays the MAC address of the onboard Ethernet controller.                    |
| Boot Counter     | no option                   | Displays the number of boot-ups. (max. 16777215)                                |
| Running Time     | no option                   | Displays the time the board is running [in hours max. 65535].                   |

# **Advanced Setup**

Select the Advanced tab from the setup menu to enter the Advanced BIOS Setup screen. The menu is used for setting advanced features:

| Main | Advanced                      | Boot | Security | Power | Exit |
|------|-------------------------------|------|----------|-------|------|
|      | ACPI Configuration            |      |          |       |      |
|      | PCI Configuration             |      |          |       |      |
|      | Graphics Configuration        |      |          |       |      |
|      | CPU Configuration             |      |          |       |      |
|      | Chipset Configuration         |      |          |       |      |
|      | I/O Interface Configuration   |      |          |       |      |
|      | Clock Configuration           |      |          |       |      |
|      | IDE Configuration             |      |          |       |      |
|      | USB Configuration             |      |          |       |      |
|      | Keyboard/Mouse Configuration  |      |          |       |      |
|      | Remote Access Configuration   |      |          |       |      |
|      | Hardware Health Configuration |      |          |       |      |
|      | Watchdog Configuration        |      |          |       |      |

## **ACPI Configuration Submenu**

| Feature                         | Options                                           | Description                                                                                                                                                                                                                                                    |
|---------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACPI Aware O/S                  | No<br>Yes                                         | Set this value to allow the system to utilize the Intel ACPI (Advanced Configuration and Power Interface). Set to NO for non ACPI aware operating system like DOS and Windows NT. Set to YES if your OS complies with the ACPI specification (e.g. Windows XP) |
| ACPI Version Features           | ACPI v1.0<br>ACPI v2.0<br>ACPI v3.0               | ACPI version supported by the BIOS ACPI code and tables.                                                                                                                                                                                                       |
| System Off Mode                 | G3/Mech Off<br>S5/Soft Off                        |                                                                                                                                                                                                                                                                |
| ACPI APIC support               | Enabled<br>Disabled                               | Set to enable to include the APIC support table to ACPI.                                                                                                                                                                                                       |
| Suspend mode                    | S1 (POS)<br>S3 (STR)                              | Select the state used for ACPI system suspend.                                                                                                                                                                                                                 |
| Repost Video on S3<br>Resume    | No<br>Yes                                         | Determines whether to invoke VGA BIOS post on S3 resume (required by some OS to re-initialize graphics).                                                                                                                                                       |
| USB Device Wakeup<br>From S3/S4 | Disabled<br>Enabled                               | Enable or disable USB device wakeup from S3 and S4 state.                                                                                                                                                                                                      |
| Active Cooling Trip<br>Point    | Disabled 50, 60, 70, 80, 90°C                     | Specifies the temperature threshold at which the ACPI aware OS turns the fan on/off.                                                                                                                                                                           |
| Passive Cooling Trip<br>Point   | Disabled 50, 60, 70, 80, <b>90</b> °C             | Specifies the temperature threshold at which the ACPI aware OS starts/stops CPU clock throttling.                                                                                                                                                              |
| Critical Trip Point             | Disabled, 80, 85, 90, 95, 100, <b>105</b> , 110°C | Specifies the temperature threshold at which the ACPI aware OS performs a critical shutdown.                                                                                                                                                                   |
| Watchdog ACPI Event             | Shutdown<br>Restart                               | Select the event that is initiated by the watchdog ACPI event. When the watchdog times out a critical but orderly OS shutdown or restart can be performed (see note below).                                                                                    |
| GPI1 Function                   | No Function<br>Lid Switch                         | Determines the functionality of GPI1.                                                                                                                                                                                                                          |
| GPI0 Function                   | No Function<br>Sleep Button                       | Determines functionality of GPI0.                                                                                                                                                                                                                              |

#### NOTE

In ACPI mode it is not possible for a "Watchdog ACPI Event" handler to directly restart or shutdown the OS. For this reason the BIOS will do one of the following:

For Shutdown: An over temperature notification is executed. This causes the OS to shut down in an orderly fashion.

For Restart: An ACPI fatal error is reported to the OS.

It depends on your particular OS as to how this reported fatal error will be handled when the Restart function is selected. If you are using Windows XP there is a setting that can be enabled to ensure that the OS will perform a restart when a fatal error is detected. After a very brief blue-screen the system will restart.

You can enable this setting by going to the "System Properties" dialog box and choosing the "Advanced" tab. Once there, choose the "Settings" button for the "Startup and Recovery" section. This will open the "Startup and Recovery" dialog box. In this dialog box under "System failure" there are three check boxes that define what Windows will do when a fatal error has been detected. In order to ensure that the system restarts after a 'Watchdog ACPI Event" that is set to 'Restart', you must make sure that the check box for the selection "Automatically restart" has been checked. If this option is not selected then Windows will remain at a blue-screen after a "Watchdog ACPI Event" that has been configured for 'Restart' has been generated. Below is a Windows screen-shot showing the proper configuration.

## Win XP Watchdog ACPI Event restart configuration

### **PCI Configuration Submenu**

| Feature                       | Options                 | Description                                                                                                                                                                                                                                                                                               |
|-------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plug & Play O/S               | No<br>Yes               | Specifies if manual configuration is desired. Set to <i>NO</i> for operating systems that do not meet the Plug and Play specification. In this case the BIOS configures all devices in the system. Select <i>YES</i> to let the operating system configure PnP devices that are not required for booting. |
| PCI Latency Timer             | 32, <b>64</b> , 96, 248 | This option allows you to adjust the latency timer of all devices on the PCI bus.                                                                                                                                                                                                                         |
| Allocate IRQ to PCI VGA       | Yes<br>No               | Allow or restrict the BIOS from giving the VGA controller an IRQ resource.                                                                                                                                                                                                                                |
| Allocate IRQ to SMBUS<br>HC   | Yes<br>No               | Allow or restrict the BIOS from giving the SMBus controller an IRQ resource.                                                                                                                                                                                                                              |
| PCI IRQ Resource<br>Exclusion | sub menu                | Opens PCI IRQ Resource Exclusion sub menu.                                                                                                                                                                                                                                                                |
| PCI Interrupt Routing         | sub menu                | Opens PCI Interrupt Routing sub menu.                                                                                                                                                                                                                                                                     |

#### **PCI IRQ Resource Exclusion Submenu**

| Feature | Options               | Description                                                             |
|---------|-----------------------|-------------------------------------------------------------------------|
| IRQ xx  | Available<br>Reserved | Allow or restrict the BIOS from giving IRQ resource to PCI/PNP devices. |
|         | Reserved              | to FCI/FINF devices.                                                    |

### **PCI Interrupt Routing Submenu**

| Feature           | Options                | Description                                                                                                                                                                     |
|-------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIRQ xx (devices) | Auto,<br>3, 4,, 14, 15 | Select fixed IRQ for PCI interrupt line or set to AUTO to let the BIOS and operating system route an IRQ.  Note: Make sure that the selected IRQ is not assigned to legacy I/O. |

### **Graphics Configuration Submenu**

| Feature                     | Options                            | Description                                                                                                                                                              |
|-----------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary Video Device        | IGD<br>PCI/IGD                     | Select primary video adapter to be used during boot up.                                                                                                                  |
|                             | PCI/PEG                            | IGD: Internal Graphics Device                                                                                                                                            |
|                             | PEG/IGD                            | PEG: PCI Express x16 Graphics Port Device                                                                                                                                |
|                             | PEG/PCI                            | PCI: Standard PCI Express or PCI<br>Graphics Device                                                                                                                      |
| Internal VGA Mode<br>Select | Disabled Enabled, 1MB Enabled, 8MB | This option allows you to disable the internal VGA controller or enable it with 1MB or 8MB initial frame buffer size.                                                    |
| DVMT Mode Select            | Fixed Mode DVMT Mode               | Select the DVMT mode to be used by the DVMT graphics driver.                                                                                                             |
|                             | Combo Mode                         | Fixed Mode: The amount of DVMT memory selected is always allocated by the DVMT graphics driver.                                                                          |
|                             |                                    | DVMT Mode: The DVMT driver only allocates as much memory as required for the current video mode but may allocate memory up to the limit specified in the following node. |
|                             |                                    | Combo Mode: The DVMT graphics driver allocates at least 64MB but may allocate up to 224MB if required.                                                                   |
|                             |                                    | DVMT = Dynamic Video Memory<br>Technology                                                                                                                                |

| DVMT/FIXED Memory        | 64MB                            | Amount of DRAM the DVMT                                                                 |
|--------------------------|---------------------------------|-----------------------------------------------------------------------------------------|
|                          | 128MB                           | graphics driver can or will allocate                                                    |
|                          | Maximum DVMT                    | (depends on DVMT mode selected).                                                        |
| Boot Display Device      | Auto                            | Select the display device(s) used for                                                   |
|                          | CRT only                        | boot up.                                                                                |
|                          | SDVO only                       | LFP = Local Flat Panel (LVDS)                                                           |
|                          | CRT + SDVO                      | Note: Auto feature only works with                                                      |
|                          | LFP only                        | a DDC compatible CRT monitor.                                                           |
|                          | CRT + LFP                       |                                                                                         |
| Boot Display Preference  | LFP SDVO-B SDVO-C               | Select order in which devices are                                                       |
|                          | LFP SDVO-C SDVO-B               | checked and enabled as boot display devices in case a combination of LFP                |
|                          | SDVO-B SDVO-C LFP               | and SDVO devices is present. The                                                        |
|                          | SDVO-C SDVO-B LFP               | preference selection is only used if<br>Boot Display Device selection is set            |
|                          |                                 | to Auto.                                                                                |
| Local Flat Panel Type    | Auto                            | Select a predefined LFP type or                                                         |
|                          | VGA 1x18 (002h)                 | choose Auto to let the BIOS automatically detect and configure                          |
|                          | VGA 1x18 (013h)                 | the attached LVDS panel.                                                                |
|                          | SVGA 1x18 (004h)                | Auto detection is performed by                                                          |
|                          | XGA 1x18 (006h)                 | reading an EDID data set via the video I <sup>2</sup> C bus.                            |
|                          | XGA 2x18 (007h)                 | The number in brackets specifies the                                                    |
|                          | XGA 1x24 (008h)                 | internal number of the respective                                                       |
|                          | XGA 2x24 (012h)                 | panel data set.                                                                         |
|                          | SXGA 2x24 (00Ah)                | Note: Customized EDID <sup>TM</sup> utilizes an OEM defined EDID <sup>TM</sup> data set |
|                          | UXGA 2x24 (00Ch)                | stored in the BIOS flash device.                                                        |
|                          | Customized EDID <sup>TM</sup> 1 | VGA = 640x480                                                                           |
|                          | Customized EDID <sup>TM</sup> 2 | SVGA = 800x600                                                                          |
|                          | Customized EDID <sup>TM</sup> 3 | XGA = 1024x768                                                                          |
|                          |                                 | SXGA = 1280x1024                                                                        |
|                          |                                 | UXGA = 1600x1200                                                                        |
| Local Flat Panel Scaling | Centering,                      | Select whether and how to scale the                                                     |
|                          | Expand Text,                    | actual video mode resolution to the local flat panel resolution.                        |
|                          | Expand Graphics,                |                                                                                         |
|                          | Expand Text & Graphics          |                                                                                         |
| Backlight Control        | 0%, 25%, 50%, 75%, <b>100%</b>  | Set local flat panel backlight control value.                                           |

| SDVO Port B Device | None                                     | Select the SDVO device connected to                                  |
|--------------------|------------------------------------------|----------------------------------------------------------------------|
|                    | DVI                                      | this port.                                                           |
|                    | TV                                       |                                                                      |
|                    | CRT                                      |                                                                      |
|                    | LVDS                                     |                                                                      |
| SDVO Port C Device | None                                     | Select the SDVO device connected to                                  |
|                    | DVI                                      | this port.                                                           |
|                    | TV                                       |                                                                      |
|                    | CRT                                      |                                                                      |
|                    | LVDS                                     |                                                                      |
| TV Standard        | VBIOS-Default                            | Select TV standard that should be                                    |
|                    | NTSC                                     | supported. TV connection type is automatically detected by the Video |
|                    | PAL                                      | BIOS.                                                                |
|                    | SECAM                                    |                                                                      |
|                    | SMPTE240M                                |                                                                      |
|                    | ITU-R television                         |                                                                      |
|                    | SMPTE295M                                |                                                                      |
|                    | SMPTE296M                                |                                                                      |
|                    | EIA-770.2                                |                                                                      |
|                    | EIA-770.3                                |                                                                      |
| TV Sub-Type        | (Options depend on selected TV standard) | Select sub-type for selected TV standard.                            |

## **CPU Configuration Submenu**

| Feature                         | Options                                 | Description                                                                                                                                                                                                                                                                              |
|---------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processor Info Block            | No option                               | Displays the processor manufacturer, brand, frequency, and cache sizes.                                                                                                                                                                                                                  |
| MPS Revision                    | 1.1<br>1.4                              | Select the revision of the multi processor support interface that should be offered by the BIOS. Set back to 1.1 in case problems occur with older non ACPI operating systems.                                                                                                           |
| Max CPUID Value<br>Limit        | Disabled<br>Enabled                     | When <b>enabled</b> , the processor will limit the maximum CPUID input value to <b>03h</b> when queried, even if the processor supports a higher CPUID input value. When <b>disabled</b> , the processor will return the actual maximum CPUID input value of the processor when queried. |
|                                 |                                         | Limiting the CPUID input value may be required for older operating systems that cannot handle the extra CPUID information returned when using the full CPUID input value.                                                                                                                |
| Execute Disable Bit             | Disabled<br>Enabled                     | Enable or disable the hardware support for data execution prevention.                                                                                                                                                                                                                    |
| Core Multi-<br>Processing       | Disabled<br>Enabled                     | When set to disabled, the second core in a dual core processor system is not used.                                                                                                                                                                                                       |
| Intel SpeedStep tech.           | Maximum Speed                           | Maximum: CPU speed is set to maximum.                                                                                                                                                                                                                                                    |
|                                 | Minimum Speed                           | Minimum: CPU speed is set to minimum.                                                                                                                                                                                                                                                    |
|                                 | Automatic Disabled                      | Automatic: CPU speed is controlled by the operating system.                                                                                                                                                                                                                              |
|                                 | Disabled                                | Disabled: No SpeedStep, default CPU speed.                                                                                                                                                                                                                                               |
|                                 |                                         | Note: This option is not available for Celeron M CPUs.                                                                                                                                                                                                                                   |
| Max. CPU<br>Frequency           | (Available options depend on processor) | Allows to reduce the maximum processor frequency. This limits the maximum frequency the CPU can be set to when SpeedStep is set to Automatic or Maximum Speed. Used when the system is AC powered.                                                                                       |
|                                 |                                         | Note: This option is not available for Celeron M CPUs.                                                                                                                                                                                                                                   |
| Max. CPU<br>Frequency (Battery) | (same as above)                         | Allows to reduce the maximum processor frequency. This limits the maximum frequency the CPU can be set to when SpeedStep is set to Automatic or Maximum Speed. Used when the system is battery powered.                                                                                  |
|                                 |                                         | Note: This option is not available for Celeron M CPUs. This node is only visible when the system is connected to a battery system.                                                                                                                                                       |
| On Demand Clock                 | Disabled                                | Allows a reduction of the performance of the processor by                                                                                                                                                                                                                                |
| Modulation                      | 75%<br>50%                              | utilizing clock modulation. The value indicates the CLOCK ON to CLOCK OFF interval ratio. E.g. 75% results in a performance decrease of about 25%.                                                                                                                                       |
|                                 | 25%                                     | Note: This option is only available for Celeron M CPUs.                                                                                                                                                                                                                                  |
| Intel(R) C-State tech.          | Disabled                                | Enable or disable advanced CPU C-state support.                                                                                                                                                                                                                                          |
| , ,                             | Enabled                                 | **                                                                                                                                                                                                                                                                                       |

| C1 Enable      | Standard | Enable standard or enhanced C1 support.                    |
|----------------|----------|------------------------------------------------------------|
|                | Enhanced |                                                            |
| C2 Enable      | Disabled | Disable or enable C2 support in standard or enhanced mode. |
|                | Standard |                                                            |
|                | Enhanced |                                                            |
| C3 Enable      | Disabled | Disable or enable C3 support in standard or enhanced mode. |
|                | Standard |                                                            |
|                | Enhanced |                                                            |
| C4 Enable      | Disabled | Disable or enable C4 support in standard or enhanced mode. |
|                | Standard |                                                            |
|                | Enhanced |                                                            |
| Hard C4 Enable | Disabled | Enable or disable hard C4 support (additional power        |
|                | Enabled  | reduction compared to C4).                                 |

## **Chipset Configuration Submenu**

| Feature             | Options   | Description                                                                          |
|---------------------|-----------|--------------------------------------------------------------------------------------|
| Memory Hole         | Disabled  | Enable or disable the memory hole between 15MB                                       |
|                     | 15MB-16MB | and 16MB. If enabled, accesses to this range are forwarded to the LPC / PCI bus.     |
| Chipset Thermal     | Disabled  | This enables or disables chipset thermal throttling.                                 |
| Throttling          | Enabled   |                                                                                      |
| IOAPIC              | Disabled  | Enable / Disable ICH7M-DH IOAPIC function.                                           |
|                     | Enabled   |                                                                                      |
| APIC ACPI SCI IRQ   | Disabled  | If set to Disabled IRQ9 is used for the SCI.                                         |
|                     | Enabled   | If set to Enabled IRQ20 is used for the SCI.                                         |
| C4 On C3            | Disabled  | If enabled the CPU is put to C4 state, when the ACPI                                 |
|                     | Enabled   | OS initiates a transition to C3, for additional power saving at "Desktop Idle Mode". |
| Active State Power  | Disabled  | Enable or disable PCI Express L0s and L1 link power                                  |
| Management          | Enabled   | states.                                                                              |
| PCIE Port 0         | Auto      | Enable or disable PCI Express port.                                                  |
|                     | Enabled   |                                                                                      |
|                     | Disabled  |                                                                                      |
| PCIE Port 1         | Auto      | Enable or disable PCI Express port.                                                  |
|                     | Enabled   |                                                                                      |
|                     | Disabled  |                                                                                      |
| PCIE Port 2         | Auto      | Enable or disable PCI Express port.                                                  |
|                     | Enabled   |                                                                                      |
|                     | Disabled  |                                                                                      |
| PCIE Port 3         | Auto      | Enable or disable PCI Express port.                                                  |
|                     | Enabled   |                                                                                      |
|                     | Disabled  |                                                                                      |
| PCIE Port 4         | Auto      | Enable or disable PCI Express port.                                                  |
|                     | Enabled   |                                                                                      |
|                     | Disabled  |                                                                                      |
| PCIE High Priority  | Disabled  | Enable PCI Express high priority port for isochronous                                |
| Port                | Port 0    | data transfers.                                                                      |
|                     | Port 1    |                                                                                      |
|                     | Port 2    |                                                                                      |
|                     | Port 3    |                                                                                      |
|                     | Port 4    |                                                                                      |
| PCIE Port 0 IOxAPIC | Disabled  | Enable support for IOAPIC behind PCI Express port.                                   |
| Enable              | Enabled   |                                                                                      |

| PCIE Port 1IOxAPIC  | Disabled | Enable support for IOAPIC behind PCI Express port. |
|---------------------|----------|----------------------------------------------------|
| Enable              | Enabled  |                                                    |
| PCIE Port 2 IOxAPIC | Disabled | Enable support for IOAPIC behind PCI Express port. |
| Enable              | Enabled  |                                                    |
| PCIE Port 3 IOxAPIC | Disabled | Enable support for IOAPIC behind PCI Express port. |
| Enable              | Enabled  |                                                    |
| PCIE Port 4 IOxAPIC | Disabled | Enable support for IOAPIC behind PCI Express port. |
| Enable              | Enabled  |                                                    |

# I/O Interface Configuration Submenu

| Feature            | Options  | Description                                                |
|--------------------|----------|------------------------------------------------------------|
| Onboard Audio      | Azalia   | Configure onboard audio controller for AC'97 or Azalia     |
| Controller         | AC97     | (Intel High Definition Audio) mode.                        |
|                    | Disabled | Note: Azalia mode requires an external Azalia codec.       |
| Onboard Ethernet   | Enabled  | Enable / Disable the ICH7M-DH onboard Ethernet             |
| Controller         | Disabled | controller.                                                |
| SIO Winbond W83627 | sub menu | Opens sub menu. Note: This setup node is only available if |
| Configuration      |          | an external Winbond W83627 Super I/O has been              |
|                    |          | implemented on the carrier board.                          |

### SIO Winbond W83627 Configuration

| Feature                          | Options                                                                             | Description                                                |
|----------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------|
| Floppy Controller                | <b>Disabled</b><br>Enabled                                                          | Enable / Disable the W83627 floppy controller.             |
| Floppy A                         | Disabled<br>360 KB 5¼"<br>1.2 MB 5¼"<br>720 KB 3 ½"<br>1.44 MB 3 ½"<br>2.88 MB 3 ½" | Select the floppy drive A type.                            |
| Serial Port 1/2<br>Configuration | Disabled<br>3F8/IRQ4<br>2F8/IRQ3                                                    | Specifies the I/O base address and IRQ of serial port 1/2. |
|                                  | 3E8/IRQ4<br>2E8/IRQ3                                                                |                                                            |
| Serial Port 2 Mode               | Normal<br>IrDA<br>ASK IR                                                            | Specifies the mode for serial port 2.                      |
| IR Duplex Mode                   | Full Duplex Half Duplex                                                             | Select IRDA full or half duplex function.                  |
| IR I/O Pin Select                | SINB/SOUTB<br>IRRX/RTX                                                              | Select receiver and transmit pins for IRDA mode.           |
| Parallel Port Address            | Disabled 378 278 3BC                                                                | Specifies the I/O base address used by the parallel port.  |
| Parallel Port Mode               | Normal Bi-directional ECP                                                           | Specifies the parallel port mode.                          |
|                                  | EPP<br>ECP&EPP                                                                      |                                                            |
| EPP Version                      | 1.9                                                                                 | Specifies the EPP version.                                 |
| Parallel Port DMA                | DMA0<br>DMA1<br>DMA3                                                                | Specifies the DMA channel for parallel port in ECP mode.   |
| Parallel Port IRQ                | IRQ5<br>IRQ7                                                                        | Specifies the interrupt for the parallel port.             |

**NOTE** This setup menu is only available if an external Winbond W83627 Super I/O has been implemented on the carrier board.

## **Clock Configuration**

| Feature         | Options  | Description                                            |
|-----------------|----------|--------------------------------------------------------|
| Spread Spectrum | Disabled | Enable spread spectrum clock modulation to reduce EMI. |
|                 | Enabled  |                                                        |

## **IDE Configuration Submenu**

| Feature                 | Options             | Description                                                                                                       |
|-------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|
| ATA/IDE Configuration   | Disabled            | Configure the integrated parallel and serial ATA controllers                                                      |
|                         | Compatible          |                                                                                                                   |
|                         | Enhanced            | Disabled: Both controllers are disabled.                                                                          |
|                         |                     | Compatible: Both controllers operate in legacy or compatible mode.                                                |
|                         |                     | Enhanced: Both controllers operate in enhanced or native mode.                                                    |
| Legacy IDE Channels     | SATA Only           | Configure the legacy channels in compatible mode.                                                                 |
|                         | SATA Pri, PATA Sec  |                                                                                                                   |
|                         | PATA Only           |                                                                                                                   |
| Configure SATA as       | Disabled            | Disable SATA or configure it as RAID controller.                                                                  |
|                         | RAID                | Note: This node is only available if ATA/IDE                                                                      |
|                         |                     | Configuration is set to Compatible and the Legacy IDE Channels configuration node is set to PATA only.            |
| Configure SATA as       | IDE                 | Configure SATA device as IDE, RAID or AHCI                                                                        |
|                         | RAID                | controller.                                                                                                       |
|                         | AHCI                | Note: This node is only available if ATA/IDE Configuration is set to Enhanced.                                    |
| Primary IDE Master      | sub menu            | Reports type of connected IDE device.                                                                             |
| Primary IDE Slave       | sub menu            | Reports type of connected IDE device.                                                                             |
| Secondary IDE Master    | sub menu            | Reports type of connected IDE device.                                                                             |
| Secondary IDE Slave     | sub menu            | Reports type of connected IDE device.                                                                             |
| Hard Disk Write Protect | Disabled<br>Exclude | If enabled, protects the hard drive from being erased.                                                            |
|                         | Enabled             | Disabled allows the hard drive to be used normally. Read, write and erase functions can be performed to the disk. |

| IDE Detect Time Out | 0, 5, 10, 30, <b>35</b> | Set this option to stop the BIOS from searching for      |
|---------------------|-------------------------|----------------------------------------------------------|
| (s)                 |                         | IDE devices within the specified number of seconds.      |
|                     |                         | Basically, this allows you to fine-tune the settings to  |
|                     |                         | allow for faster boot times. Adjust this setting until a |
|                     |                         | suitable timing can be found that will allow for all     |
|                     |                         | IDE disk drives that are attached to be detected.        |
| ATA(PI) 80Pin Cable | Host&Device             | Select the mechanism for detecting 80Pin ATA(PI)         |
| Detection           | Host                    | cable.                                                   |
|                     | Device                  | Note: The use of an 80-conductor ATA cable is            |
|                     |                         | mandatory for running UDMA66 and faster hard disk        |
|                     |                         | drives. The standard 40-conductor ATA cable cannot       |
|                     |                         |                                                          |

### Primary/Secondary IDE Master/Slave Submenu

| Feature                             | Options                    | Description                                                                                                                                                                                                               |
|-------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device                              | Hard Disk<br>ATAPI CDROM   | Displays the type of drive detected. The 'grayed-out' items below are the IDE disk drive parameters taken from the firmware of the IDE disk.                                                                              |
| Vendor                              | no option                  | Manufacturer of the device.                                                                                                                                                                                               |
| Size                                | no option                  | Total size of the device.                                                                                                                                                                                                 |
| LBA Mode                            | supported<br>not supported | Shows whether the device supports Logical Block Addressing.                                                                                                                                                               |
| Block Mode                          | number of sectors          | Block mode boosts IDE performance by increasing the amount of data transfered. Only 512 byte of data can be transfered per interrupt if block mode is not used. Block mode allows transfers of up to 64 kB per interrupt. |
| PIO Mode                            | 0, 1, 2, 3, 4              | IDE PIO mode programs timing cycles between the IDE drive and the programmable IDE controller. As the PIO mode increases, the cycle time decreases.                                                                       |
| Async DMA                           | no option                  | This indicates the highest Asynchronous DMA Mode that is supported.                                                                                                                                                       |
| Ultra DMA                           | no option                  | This indicates the highest Synchronous DMA Mode that is supported.                                                                                                                                                        |
| S.M.A.R.T                           | no option                  | Self-Monitoring Analysis and Reporting Technology protocol used by IDE drives of some manufacturers to predict drive failures.                                                                                            |
| Туре                                | Not Installed Auto         | Sets the type of device that the BIOS attempts to boot from after the POST has completed.                                                                                                                                 |
|                                     | CD/DVD<br>ARMD             | Not Installed prevents the BIOS from searching for an IDE disk.                                                                                                                                                           |
|                                     |                            | Auto allows the BIOS to auto detect the IDE disk drive type.                                                                                                                                                              |
|                                     |                            | CD/DVD specifies that an IDE CD/DVD drive is attached. The BIOS will not attempt to search for other types of IDE disk drives.                                                                                            |
|                                     |                            | ARMD specifies an ATAPI Removable Media Device. This includes, but is not limited to ZIP and LS-120.                                                                                                                      |
| LBA/Large<br>Mode                   | Disabled Auto              | Set to <i>AUTO</i> to let the BIOS auto detect LBA mode control. Set to Disabled to prevent the BIOS from using LBA mode.                                                                                                 |
| Block<br>(Multi-Sector<br>Transfer) | Disabled<br>Auto           | Set to <i>AUTO</i> to let the BIOS auto detect device support for multi sector transfer. The data transfer to and from the device will occur multiple (the number of sectors, see above) sectors at a time.               |
|                                     |                            | Set to Disabled to prevent the BIOS from using block mode. The data transfer to and from the device will occur one sector at a time.                                                                                      |
| PIO Mode                            | Auto 0, 1, 2, 3, 4         | Set to <i>AUTO</i> to let the BIOS auto detect the supported PIO mode.                                                                                                                                                    |

| DMA Mode                  | Auto<br>SWDMA0, 1, 2<br>MWDMA0, 1, 2<br>UDMA0, 1, 2, 3, 4, 5,<br>6 | Set to <i>AUTO</i> to let the BIOS auto detect the supported DMA mode.  SWDMA = Single Word DMA  MWDMA = Multi Word DMA  UDMA = Ultra DMA                                                                                                                                                                                                                          |
|---------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S.M.A.R.T                 | Auto<br>Disabled<br>Enabled                                        | Set to <i>AUTO</i> to let the BIOS auto detect hard disk drive support.  Set to <i>Disabled</i> to prevent the BIOS from using SMART feature.  Set to <i>Enabled</i> to allow the BIOS to use SMART feature on supported hard disk drives.                                                                                                                         |
| 32Bit Data<br>Transfer    | Disabled <b>Enabled</b>                                            | Enable/Disable 32-bit data transfers on supported hard disk drives.                                                                                                                                                                                                                                                                                                |
| ARMD<br>Emulation<br>Type | Auto<br>Floppy<br>Hard disk drive                                  | ARMD is a device that uses removable media, such as the LS120, MO (Magneto-optical), or Iomega Zip drives. If you want to boot from media on ARMD, it is required that you emulate boot up from a floppy or hard disk drive. This is essentially necessary when trying to boot to DOS. You can select the type of emulation used if you are booting such a device. |

# **USB Configuration Submenu**

| Feature                        | Options              | Description                                                                                                                                                                                                                                                                         |
|--------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB Functions                  | Disabled             | Disable ICH7M-DH USB host controllers.                                                                                                                                                                                                                                              |
|                                | 2 USB Ports          | Enable UHCI host controller 0.                                                                                                                                                                                                                                                      |
|                                | 4 USB Ports          | Enable UHCI host controller 0 + 1.                                                                                                                                                                                                                                                  |
|                                | 6 USB Ports          | Enable UHCI host controller $0 + 1 + 2$ .                                                                                                                                                                                                                                           |
|                                | 8 USB Ports          | Enable UHCI host controller $0 + 1 + 2 + 3$ .                                                                                                                                                                                                                                       |
| USB 2.0 Controller             | Enabled              | Enable the ICH7M-DH USB 2.0 (EHCI) host controller.                                                                                                                                                                                                                                 |
|                                | Disabled             |                                                                                                                                                                                                                                                                                     |
| Legacy USB Support             | Disabled Enabled     | Legacy USB Support refers to the USB keyboard, USB mouse and USB mass storage device support.                                                                                                                                                                                       |
|                                | Auto                 | If this option is <i>Disabled</i> , any attached USB device will not become available until a USB compatible operating system is booted. However, legacy support for USB keyboard will be present during POST.                                                                      |
|                                |                      | When this option is <i>Enabled</i> , those USB devices can control the system even when there is no USB driver loaded.                                                                                                                                                              |
|                                |                      | AUTO disables legacy support if no USB devices are connected.                                                                                                                                                                                                                       |
| USB Keyboard Legacy<br>Support | Disabled<br>Enabled  | Enable/Disable USB keyboard legacy support.  NOTE: This option has to be used with caution. If the system is equipped with USB keyboard only, the user cannot enter setup to enable the option back.                                                                                |
| USB Mouse Legacy<br>Support    | Disabled<br>Enabled  | Enable/Disable USB mouse legacy support.                                                                                                                                                                                                                                            |
| USB Storage Device<br>Support  | Disabled<br>Enabled  | Enable/Disable USB mass storage device support.                                                                                                                                                                                                                                     |
| Port 64/60 Emulation           | Disabled<br>Enabled  | Enable/Disable the "Port 6h/64h" trapping option. Port 60h/64h trapping allows the BIOS to provide full PS/2 based legacy support for USB keyboard and mouse. It provides the PS/2 functionalities like keyboard lock, password setting, scan code selection etc. to USB keyboards. |
| USB 2.0 Controller<br>Mode     | FullSpeed<br>HiSpeed | Configures the USB 2.0 host controller in HiSpeed (480Mbps) or FullSpeed (12Mbps).                                                                                                                                                                                                  |
| BIOS EHCI Hand-Off             | Disabled<br>Enabled  | Enable workaround for OSs without EHCI hand-off support.                                                                                                                                                                                                                            |
| USB Beep Message               | Disabled<br>Enabled  | Enable/Disable the beep during USB device enumeration.                                                                                                                                                                                                                              |
| USB Stick Default<br>Emulation | Auto<br>Hard Disk    | Select default USB stick emulation type. Auto selects floppy or hard disk emulation based on the storage size of the USB stick, but the emulation type can be manually reconfigured for each device using the Mass Storage Device Configuration sub menu.                           |

| USB Mass Storage<br>Reset Delay          | 10 Sec<br>20 Sec<br>30 Sec<br>40 Sec | Number of seconds the legacy USB support BIOS routine waits for the USB mass storage device after the start unit command. |
|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| USB Mass Storage<br>Device Configuration | sub menu                             | Opens sub menu.                                                                                                           |

### **USB Mass Storage Device Configuration Submenu**

| Feature                                                 | Options                                                                                                                                                                                                                                                                                               | Description                                                                                                                                                           |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emulation Type  Auto Floppy Forced FDD Hard Disk CD-ROM | Every USB MSD that is enumerated by the BIOS will have an emulation type setup option. This option specifies the type of emulation the BIOS has to provide for the device.  Note: The device's formatted type and the emulation type provided by the BIOS must match for the device to boot properly. |                                                                                                                                                                       |
|                                                         |                                                                                                                                                                                                                                                                                                       | Select <i>AUTO</i> to let the BIOS auto detect the current formatted media.                                                                                           |
|                                                         |                                                                                                                                                                                                                                                                                                       | If Floppy is selected then the device will be emulated as a floppy drive.                                                                                             |
|                                                         |                                                                                                                                                                                                                                                                                                       | Forced FDD allows a hard disk image to be connected as a floppy image. Works only for drives formatted with FAT12, FAT16 or FAT32.                                    |
|                                                         |                                                                                                                                                                                                                                                                                                       | Hard Disk allows the device to be emulated as hard disk.  CDROM assumes the CD-ROM is formatted as bootable media, specified by the 'El Torito' Format Specification. |

# **Keyboard/Mouse Configuration Submenu**

| Feature         | Options | Description                                            |
|-----------------|---------|--------------------------------------------------------|
| Bootup Num-Lock | Off     | Specifies the power-on state of the Num-lock feature   |
|                 | On      | on the numeric keypad of the keyboard.                 |
| Typematic Rate  | Slow    | Specifies the rate at which the computer repeats a key |
|                 | Fast    | that is held down.                                     |
|                 | 1 dist  | <i>Slow</i> sets a rate of under 8 times per second.   |
|                 |         | Fast sets a rate of over 20 times per second.          |

# Remote Access Configuration Submenu

| Feature                        | Options                     | Description                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote Access                  | Disabled<br>Enabled         | Enable/Disable the BIOS remote access feature.  Note: If the systems serial ports are disabled in the 'I/ O Interface Configuration' submenu, then Serial Redirection is disabled and 'Remote Access Configuration' menu is unavailable to the users.                                                                                         |
| Serial Port Number             | COM1<br>COM2                | Select the serial port you want to use for console redirection.  Note: Only enabled serial ports are presented as an option.                                                                                                                                                                                                                  |
| Serial Port Mode               | 115200 8,n,1<br>57600 8,n,1 | Select the baud rate (transmitted bits per second) you want the serial port to use for console redirection.                                                                                                                                                                                                                                   |
|                                | 19200 8,n,1                 | Note: The terminal program used with Serial Redirection must be set to use exactly the same set of communication parameters.                                                                                                                                                                                                                  |
| Flow Control                   | None                        | Select the flow control for Serial Redirection.                                                                                                                                                                                                                                                                                               |
|                                | Hardware                    |                                                                                                                                                                                                                                                                                                                                               |
|                                | Software                    |                                                                                                                                                                                                                                                                                                                                               |
| Redirection After              | Disabled                    | With Disabled Serial Redirection functionality is                                                                                                                                                                                                                                                                                             |
| BIOS POST                      | Boot Loader                 | disabled at the end of BIOS POST.                                                                                                                                                                                                                                                                                                             |
|                                | Always                      | If set to <i>Always</i> , all resources and interrupts associated with Serial Redirection are protected and not released to DOS. This option lets Serial Redirection permanently reside at base memory which allows the DOS console to be redirected. <i>Note, that graphics output (VGA, SVGA, etc) from DOS programs is not redirected!</i> |
|                                |                             | If set to <i>Boot loader</i> , Serial Redirection is active during the OS boot loader process. This allows boot status messages to be redirected, but Serial Redirection will terminate when the OS loads.                                                                                                                                    |
| Terminal Type                  | ANSI                        | Select the target terminal type.                                                                                                                                                                                                                                                                                                              |
|                                | VT100                       | Escape sequences representing keystrokes are sent to                                                                                                                                                                                                                                                                                          |
|                                | VT-UTF8                     | the remote terminal based on these settings.                                                                                                                                                                                                                                                                                                  |
| VT-UTF8                        | Disabled                    | This option enables VT-UFT8 combination key                                                                                                                                                                                                                                                                                                   |
| Combination Key<br>Support     | Enabled                     | support for ANSI/ VT100 terminals.                                                                                                                                                                                                                                                                                                            |
| Sredir Memory<br>Display Delay | No Delay                    | Set the delay in seconds to display memory                                                                                                                                                                                                                                                                                                    |
|                                | Delay 1 Sec                 | information if serial redirection is enabled.                                                                                                                                                                                                                                                                                                 |
|                                | Delay 2 Sec                 |                                                                                                                                                                                                                                                                                                                                               |
|                                | Delay 4 Sec                 |                                                                                                                                                                                                                                                                                                                                               |
| Serial Port BIOS               | Disabled                    | Enable or disable the serial port BIOS update feature.                                                                                                                                                                                                                                                                                        |
| Update                         | Enabled                     | Disabling saves boot time.                                                                                                                                                                                                                                                                                                                    |

| NOTE | This setup node is only applicable if an external Super I/O has been |
|------|----------------------------------------------------------------------|
|      | implemented on the carrier board.                                    |

# **Hardware Monitoring Submenu**

| Feature             | Options   | Description                                  |
|---------------------|-----------|----------------------------------------------|
| H/W Health Function | Disabled  | Enable hardware health monitoring device and |
|                     | Enabled   | display the readings.                        |
| Board Temperature   | no option | Current board temperature.                   |
| CPU Temperature     | no option | Current processor die temperature.           |
| CPU Fan Speed       | no option | Current CPU FAN speed.                       |
| VcoreA              | no option | Current Core A reading.                      |
| +3.3VSB             | no option | Current 3.3V standby reading.                |
| +5VSB               | no option | Current 5V standby reading.                  |
| +12Vin              | no option | Current 12V in reading.                      |
| VBAT                | no option | Current VBAT reading.                        |

# Watchdog Configuration Submenu

| Feature          | Options           | Description                                                                                                                      |
|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------|
| POST Watchdog    | Disabled          | Select the timeout value for the POST watchdog.                                                                                  |
|                  | 30sec             |                                                                                                                                  |
|                  | 1min              | The watchdog is only active during the power-on-                                                                                 |
|                  | 2min              | self-test of the system and provides a facility to prevent errors during boot up by performing a reset.                          |
|                  | 5min              | prevent errors during boot up by performing a reset.                                                                             |
|                  | 10min             |                                                                                                                                  |
|                  | 30min             |                                                                                                                                  |
| Runtime Watchdog | Disabled          | Selects the operating mode of the runtime watchdog.                                                                              |
|                  | One time trigger  | This watchdog will be initialized just before the                                                                                |
|                  | Single Event      | operating system starts booting.                                                                                                 |
|                  | Repeated Event    | If set to 'One time trigger' the watchdog will be disabled after the first trigger.                                              |
|                  |                   | If set to 'Single event', every stage will be executed only once, then the watchdog will be disabled.                            |
|                  |                   | If set to 'Repeated event' the last stage will be executed repeatedly until a reset occurs.                                      |
| Delay            | see Post Watchdog | Select the delay time before the runtime watchdog becomes active. This ensures that an operating system has enough time to load. |
| Event 1          | NMI               | Selects the type of event that will be generated when                                                                            |
|                  | ACPI Event        | timeout 1 is reached.                                                                                                            |
|                  | Reset             |                                                                                                                                  |
|                  | Power Button      |                                                                                                                                  |
| Event 2          | Disabled          | Selects the type of event that will be generated when                                                                            |
|                  | NMI               | timeout 2 is reached.                                                                                                            |
|                  | ACPI Event        |                                                                                                                                  |
|                  | Reset             |                                                                                                                                  |
|                  | Power Button      |                                                                                                                                  |
| Event 3          | Disabled          | Selects the type of event that will be generated when                                                                            |
|                  | NMI               | timeout 3 is reached.                                                                                                            |
|                  | ACPI Event        |                                                                                                                                  |
|                  | Reset             |                                                                                                                                  |
|                  | Power Button      |                                                                                                                                  |

| Timeout 1 | 0.5sec    | Selects the timeout value for the first stage watchdog         |
|-----------|-----------|----------------------------------------------------------------|
|           | 1sec      | event.                                                         |
|           | 2sec      |                                                                |
|           | 5sec      |                                                                |
|           | 10sec     |                                                                |
|           | 30sec     |                                                                |
|           | 1min      |                                                                |
|           | 2min      |                                                                |
| Timeout 2 | see above | Selects the timeout value for the second stage watchdog event. |
| Timeout 3 | see above | Selects the timeout value for the third stage watchdog event.  |

# **Boot Setup**

Select the Boot tab from the setup menu to enter the Boot setup screen. In the upper part of the screen the Boot setup allows you to prioritize the available boot devices. The lower part of this setup screen shows options related to the BIOS boot.

### **Boot Device Priority**

| Feature                                                                                                                                                                                | Options                                                                                                                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boot Priority Selection                                                                                                                                                                | Device Based Type Based                                                                                                                                                                                                            | Select between device and type based boot priority lists. The "Device Based" boot priority list allows you to select from a list of currently detected devices only. The "Type Based" boot priority list allows you to select device types, even if a respective device is not yet present. Moreover, the "Device Based" boot priority list might change dynamically in cases when devices are physically removed or added to the system. The "Type Based" boot menu is static and can only be changed by the user. |
| 1st, 2nd, 3rd, Boot Device                                                                                                                                                             | Disabled Primary Master                                                                                                                                                                                                            | This view is only available when in the default "Type Based" mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Up to 12 boot devices can be prioritized if device based priority list control is selected. If "Type Based" priority list control is enabled only 8 boot devices can be prioritized.) | Primary Master Primary Slave Secondary Master Secondary Slave Legacy Floppy USB Harddisk USB CDROM USB Removable Dev. Onboard LAN External LAN PCI Mass Storage PCI SCSI Card Any PCI BEV Device Third Master Third Slave PCI RAID | When in "Device Based" mode you will only see the devices that are currently connected to the system. The default boot priority is <i>Removables 1st</i> , <i>ATAPI CDROM 2nd</i> , <i>Hard Disk 3rd</i> , <i>BEV 4th</i> (BEV = Boot Entry Vector, e.g. Network or SCSI Option-ROMs).                                                                                                                                                                                                                              |

# **Boot Settings Configuration**

| Feature                | Options           | Description                                                                                                                                                                                                                                                                                              |  |
|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Quick Boot             | Disabled          | If Enabled, some POST tasks will be skipped to speed-up the                                                                                                                                                                                                                                              |  |
|                        | Enabled           | BIOS boot process.                                                                                                                                                                                                                                                                                       |  |
| Quiet Boot             | Disabled          | Disabled displays normal POST diagnostic messages.                                                                                                                                                                                                                                                       |  |
|                        | Enabled           | Enabled displays OEM logo instead of POST messages.                                                                                                                                                                                                                                                      |  |
|                        |                   | Note: The default OEM logo is a dark screen.                                                                                                                                                                                                                                                             |  |
| Boot Display           | Clear<br>Maintain | Controls the end of POST boot display handling, if Quiet Boot is enabled. If set to <i>Maintain</i> the BIOS will maintain the current display contents and graphics video mode used for POST display. If set to <i>Clear</i> the BIOS will clear the screen and switch to VGA text mode at end of POST. |  |
| Automatic Boot List    | Disabled          |                                                                                                                                                                                                                                                                                                          |  |
| Retry                  | Enabled           |                                                                                                                                                                                                                                                                                                          |  |
| AddOn ROM Display      | Force BIOS        | Set display mode for Option ROM.                                                                                                                                                                                                                                                                         |  |
| Mode                   | Keep current      |                                                                                                                                                                                                                                                                                                          |  |
| Halt On Error Disabled |                   | Determines whether the BIOS halts and displays an error                                                                                                                                                                                                                                                  |  |
|                        | Enabled           | message if an error occurs. If set to <i>Enabled</i> the BIOS waits for user input.                                                                                                                                                                                                                      |  |
| Hit 'DEL' Message      | Disabled          | Allows/Prevents the BIOS to display the 'Hit Del to enter                                                                                                                                                                                                                                                |  |
| Display                | Enabled           | Setup' message.                                                                                                                                                                                                                                                                                          |  |
| Interrupt 19 Capture   | Disabled          | Allows/Prevents the option ROMs (such as network                                                                                                                                                                                                                                                         |  |
|                        | Enabled           | controllers) from trapping the boot strap interrupt 19.                                                                                                                                                                                                                                                  |  |
| PXE Boot to LAN        | Disabled          | Disable/Enable PXE boot to LAN                                                                                                                                                                                                                                                                           |  |
|                        | Enabled           | Note: When set to 'Enabled', the system has to be rebooted in order for the Intel Boot Agent device to be available in the Boot Device Menu.                                                                                                                                                             |  |
| Power Loss Control     | Remain Off        | Specifies the mode of operation if an AC power loss occurs.                                                                                                                                                                                                                                              |  |
| (see note below)       | Turn On           | Remain Off keeps the power off until the power button is                                                                                                                                                                                                                                                 |  |
|                        | Last State        | pressed.                                                                                                                                                                                                                                                                                                 |  |
|                        |                   | Turn On restores power to the computer.                                                                                                                                                                                                                                                                  |  |
|                        |                   | Last State restores the previous power state before power loss occurred.                                                                                                                                                                                                                                 |  |
|                        |                   | Note: Only works with an ATX type power supply.                                                                                                                                                                                                                                                          |  |

#### NOTE

The term 'AC power loss' stands for the state when the module loses the standby voltage on the 5V\_SB pins. On modules, the standby voltage is continuously monitored after the system is turned off. If within 30 seconds the standby voltage is no longer detected, then this is considered an AC power loss condition. If the standby voltage remains stable for 30 seconds, then it is assumed that the system was switched off properly.

Inexpensive ATX power supplies often have problems with short AC power sags. When using these ATX power supplies it is possible that the system turns off but does not switch back on, even when the PS\_ON# signal is asserted correctly by the module. In this case, the internal circuitry of the ATX power supply has become confused. Usually another AC power off/on cycle is necessary to recover from this situation.

## **Security Setup**

Select the Security tab from the setup menu to enter the Security setup screen.

### **Security Settings**

| Feature                       | Options                    | Description                                                                                                                                            |  |
|-------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Supervisor Password           | Installed<br>Not Installed | Reports if there is a supervisor password set.                                                                                                         |  |
| User Password                 | Installed<br>Not Installed | Reports if there is a user password set.                                                                                                               |  |
| Change Supervisor<br>Password | enter password             | Specifies the supervisor password.                                                                                                                     |  |
| User Access Level             | No Access                  | Sets BIOS setup utility access rights for user level.                                                                                                  |  |
|                               | View Only                  |                                                                                                                                                        |  |
|                               | Limited                    |                                                                                                                                                        |  |
|                               | Full Access                |                                                                                                                                                        |  |
| Change User Password          | enter password             | Specifies the user password.                                                                                                                           |  |
| Password Check                | Setup                      | Setup: Check password while invoking setup.                                                                                                            |  |
|                               | Always                     | Always: Check password also on each boot.                                                                                                              |  |
| Boot Sector Virus             | Disabled                   | Select <i>Enabled</i> to enable boot sector protection.                                                                                                |  |
| Protection                    | Enabled                    | The BIOS displays a warning when any program (or virus) issues a Disk Format command or attempts to write to the boot sector of the hard disk drive.   |  |
|                               |                            | If enabled, the following appears when a write is attempted to the boot sector. You may have to type N several times to prevent the boot sector write. |  |
|                               |                            | Boot Sector Write!                                                                                                                                     |  |
|                               |                            | Possible VIRUS: Continue (Y/N)?                                                                                                                        |  |
|                               |                            | The following appears after any attempt to format any cylinder, head or sector of any hard disk drive via the BIOS INT13 hard disk drive service:      |  |
|                               |                            | Format!!!                                                                                                                                              |  |
|                               |                            | Possible VIRUS: Continue (Y/N)?                                                                                                                        |  |
| BIOS Update & Write           | Disabled                   | Only visible if a supervisor password is installed. If                                                                                                 |  |
| Protection                    | Enabled                    | enabled the BIOS update and modification utilities will ask for the supervisor password before allowing any write accesses to the BIOS flash ROM chip. |  |
| END-Key Loads                 | Yes                        | If set to Yes, the user can force the loading of CMOS                                                                                                  |  |
| CMOS Defaults                 | No                         | defaults by pressing the END key during POST.                                                                                                          |  |

### **Hard Disk Security**

This feature enables the users to set, reset or disable passwords for each hard drive in Setup without rebooting. If the user enables password support, a power cycle must occur for the hard drive to lock using the new password. Both user and master password can be set independently however the drive will only lock if a user password is installed.

#### **Hard Disk Security User Password**

| Feature                                                | Options        | Description                                                                                                                                                                                            |
|--------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary/Secondary<br>Master/Slave HDD<br>User Password | enter password | Set or clear the user password for the hard disk.  Note: This option will be shaded if the hard drive does support the Security Mode Feature set but user failed to unlock the drive during BIOS POST. |

#### **Hard Disk Security User Password**

| Feature                                                  | Options        | Description                                                                                                                                                                                              |
|----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary/Secondary<br>Master/Slave HDD<br>Master Password | enter password | Set or clear the master password for the hard disk.  Note: This option will be shaded if the hard drive does support the Security Mode Feature set but user failed to unlock the drive during BIOS POST. |

# **Power Setup**

Select the Power tab from the setup menu to enter the Power Management setup screen.

| Feature                | Options                      | Description                                                                                                 |
|------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------|
| Power Management / APM | Disabled<br>Enabled          | Set this option to allow or prevent chipset power management and APM (Advanced Power Management).           |
| Suspend Timeout        | <b>Disabled</b><br>1- 60 Min | Specifies the length of time of inactivity the system waits before it enters suspend mode.                  |
| Video Power Down       | Disabled                     | Specifies the power state that the video subsystem                                                          |
| Mode                   | Standby                      | enters when the BIOS places it in a power saving state after the specified period of display inactivity has |
|                        | Suspend                      | expired.                                                                                                    |
| Hard Disk Power        | Disabled                     | Specifies the power state that the hard disk drives                                                         |
| Down Mode              | Standby                      | enter after the specified period of hard drive inactivity has expired.                                      |
|                        | Suspend                      |                                                                                                             |
| <device></device>      | Ignore                       | Determines whether the device activity is monitored                                                         |
|                        | Monitor                      | by the power management timer or not.                                                                       |
| Resume On Ring         | Disabled                     | Disable / enable RI signal (= GPE2 on pin 89 of X4                                                          |
|                        | Enabled                      | connector) to generate a wake event.                                                                        |
|                        |                              | If enabled wake is possible from all power down states including S5 (Soft Off).                             |
| Resume On PME          | Disabled                     | Disable / enable PCI PME to generate a wake event.                                                          |
|                        | Enabled                      | If enabled wake is possible from all power down states including S5 (Soft Off).                             |
| Resume On RTC          | Disabled                     | Disable / enable RTC to generate a wake event.                                                              |
| Alarm                  | Enabled                      | If enabled wake is possible from all power down states including S5 (Soft Off).                             |

| RTC Alarm Date    | <b>Everyday</b> , 0131 | Select the day of the month when the event should be       |  |
|-------------------|------------------------|------------------------------------------------------------|--|
| (Days)            |                        | generated.                                                 |  |
| System Time       | Hour:Minute:Second     | Select the system time when the event should be generated. |  |
| Power Button Mode | On/Off                 | Specifies if the system enters suspend or soft off         |  |
|                   | Suspend                | mode when the power button is pressed.                     |  |

#### **Exit Menu**

Select the Exit tab from the setup menu to enter the Exit setup screen.

You can display an Exit screen option by highlighting it using the <Arrow> keys.

| Feature                  | Description                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Save Changes and Exit    | Exit setup and reboot so the new system configuration parameters can take effect.                            |
| Discard Changes and Exit | Exit setup without saving any changes made in the BIOS setup program.                                        |
| Discard Changes          | Discard changes without exiting setup. The option values presented when the computer was turned on are used. |
| Load CMOS Defaults       | Load the CMOS defaults of all the setup options.                                                             |

#### Additional BIOS Features

The COM 830 uses a /AMIBIOS that is stored in an onboard Flash Rom chip and can be updated using the System Utility, which is available in a DOS based command line, Win32 command line, Win32 GUI, and Linux version.

The BIOS displays a message during POST and on the main setup screen identifying the BIOS project name and a revision code. The initial production BIOS is identified as B945R1xx, where B945 is the internal project name, R is the identifier for a BIOS ROM file, 1 is the so called feature number and xx is the major and minor revision number.

### **Updating the BIOS**

BIOS updates are often used by OEMs to correct platform issues discovered after the board has been shipped or when new features are added to the BIOS.

### **BIOS Recovery**

The "BIOS recovery" scenario is recommended for situations when the normal flash update fails and the user can no longer boot back to an OS to restore the system. The code that handles BIOS recovery resides in a section of the flash referred to as "boot block".

### **BIOS Recovery via Storage Devices**

In order to make a BIOS recovery from a floppy disk, CD-ROM (ISO9660) or USB floppy the BIOS file must be copied into the root directory of the storage device and renamed *AMIBOOT.ROM*.

### **BIOS Recovery via Serial Port**

The Serial Flash method allows for boot block recovery by loading a BIOS image via a serial port (COM1). This is can be used by many headless embedded systems which rely on a serial port as a debug and utility console port. This feature is disabled by default.

| NOTE | The above mentioned feature is only applicable if an external Super I/O has been |
|------|----------------------------------------------------------------------------------|
|      | implemented on the carrier board.                                                |

#### **Serial Port and Console Redirection**

Serial Redirection allows video and keyboard redirection via a standard RS-232 serial port.

| NOTE | The above mentioned feature is only applicable if an external Super I/O has been |
|------|----------------------------------------------------------------------------------|
|      | implemented on the carrier board.                                                |

## **BIOS Security Features**

The BIOS provides both a supervisor and user password. If you use both passwords, the supervisor password must be set first. The system can be configured so that all users must enter a password every time the system boots or when setup is executed.

The two passwords activate two different levels of security. If you select password support you are prompted for a one to six character password. Type the password on the keyboard. The password does not appear on the screen when typed.

The supervisor password (supervisor mode) gives unrestricted access to view and change all the setup options. The user password (user mode) gives restricted access to view and change setup options.

If only the supervisor password is set, pressing <Enter> at the password prompt of the BIOS setup program allows the user restricted access to setup.

| NOTE | Setting the password check to 'Always' restricts who can boot the system. The            |
|------|------------------------------------------------------------------------------------------|
|      | password prompt will be displayed before the system attempts to load the operating       |
|      | system. If only the supervisor password is set, pressing <enter> at the password</enter> |
|      | prompt allows the user to boot the system.                                               |

### **Hard Disk Security Features**

Hard Disk Security uses the Security Mode feature commands defined in the ATA specification. This functionality allows users to protect data using drive-level passwords. The passwords are kept within the drive, so data is protected even if the drive is moved to another computer system.

The BIOS provides the ability to 'lock' and 'unlock' drives using the security password. A 'locked' drive will be detected by the system, but no data can be accessed. Accessing data on a 'locked' drive requires the proper password to 'unlock' the disk.

The BIOS enables users to enable/disable hard disk security for each hard drive in setup. A master password is available if the user can not remember the user password. Both passwords can be set independently however the drive will only lock if a user password is installed. The max length of the passwords is 32 bytes.

During POST each hard drive is checked for security mode feature support. In case the drive supports the feature and it is locked, the BIOS prompts the user for the user password. If the user does not enter the correct user password within five attempts, the user is notified that the drive is locked and POST continues as normal. If the user enters the correct password, the drive is unlocked until the next reboot.

In order to ensure that the ATA security features are not compromised by viruses or malicious programs when the drive is typically unlocked, the BIOS disables the ATA security features at the end of POST to prevent their misuse. Without this protection it would be possible for viruses or malicious programs to set a password on a drive thereby blocking the user from accessing the data.

# **Industry Specifications**

The list below provides links to industry specifications that apply to Ampro modules.

| Specification                                                 | Link                                                            |
|---------------------------------------------------------------|-----------------------------------------------------------------|
| Audio Codec '97 Component Specification, Version 2.3 (AC '97) | http://www.intel.com/design/chipsets/audio/                     |
| Low Pin Count Interface Specification, Revision 1.0 (LPC)     | http://developer.intel.com/design/<br>chipsets/industry/lpc.htm |
| Universal Serial Bus (USB) Specification, Revision 2.0        | http://www.usb.org/home                                         |
| PCI Specification, Revision 2.2                               | http://www.pcisig.com/specifications                            |
| Serial ATA Specification, Revision 1.0a                       | http://www.serialata.org                                        |
| PICMG <sup>®</sup> COM Express Module™ Base Specification     | http://www.picmg.org/                                           |
| PCI Express Base Specification, Revision 2.0                  | http://www.pcisig.com/specifications                            |

# Appendix A Technical Support

Ampro Computers, Inc. provides a number of methods for contacting Technical Support listed in the Table A-1 below. Requests for support through the Ask an Expert are given the highest priority, and usually will be addressed within one working day.

- Ampro Ask an Expert This is a comprehensive support center designed to meet all your technical needs. This service is free and available 24 hours a day through the Ampro web site at <a href="http://ampro.custhelp">http://ampro.custhelp</a>. This includes a searchable database of Frequently Asked Questions, which will help you with the common information requested by most customers. This is a good source of information to look at first for your technical solutions. However, you must register online if you wish to use the Ask a Ouestion feature.
- Personal Assistance You may also request personal assistance by creating an Ask an Expert account
  and then going to the Ask a Question feature. Requests can be submitted 24 hours a day, 7 days a week.
  You will receive immediate confirmation that your request has been entered. Once you have submitted
  your request, you must log in to go to My Stuff area where you can check status, update your request,
  and access other features.
- InfoCenter This service is also free and available 24 hours a day at the Ampro web site at <a href="http://www.ampro.com">http://www.ampro.com</a>. However, you must sign up online before you can login to access this service.

The InfoCenter was created as a resource for embedded system developers to share Ampro's knowledge, insight, and expertise. This page contains links to White Papers, Specifications, and additional technical information.

Table A-1. Technical Support Contact Information

| Method        | Contact Information                                                                  |
|---------------|--------------------------------------------------------------------------------------|
| Ask an Expert | http://ampro.custhelp.com                                                            |
| Web Site      | http://www.ampro.com                                                                 |
| Standard Mail | Ampro Computers, Incorporated<br>5215 Hellyer Avenue<br>San Jose, CA 95138-1007, USA |

Appendix A Technical Support